21
21
22
22
23
23
ARCHITECTURES_PATH = "/kaggle/input/second-dataset/dataset"
24
- MAX_EPOCHS = 1
24
+ MAX_EPOCHS = 70
25
25
LEARNING_RATE = 0.025
26
26
BATCH_SIZE = 96
27
27
NUM_MODLES = 2000
@@ -78,19 +78,19 @@ def get_data_loaders(batch_size=512):
78
78
)
79
79
num_samples = len (train_data )
80
80
indices = np .random .permutation (num_samples )
81
- split = int (num_samples * 0.75 )
81
+ split = int (num_samples * 0.5 )
82
82
83
83
search_train_loader = DataLoader (
84
84
train_data ,
85
85
batch_size = batch_size ,
86
- num_workers = 6 ,
86
+ num_workers = 10 ,
87
87
sampler = SubsetRandomSampler (indices [:split ]),
88
88
)
89
89
90
90
search_valid_loader = DataLoader (
91
91
train_data ,
92
92
batch_size = batch_size ,
93
- num_workers = 6 ,
93
+ num_workers = 10 ,
94
94
sampler = SequentialSampler (indices [split :]),
95
95
)
96
96
@@ -106,7 +106,7 @@ def train_model(
106
106
fast_dev_run = False
107
107
):
108
108
with model_context (architecture ):
109
- model = DartsSpace (width = 16 , num_cells = 10 , dataset = 'cifar' )
109
+ model = DartsSpace (width = 16 , num_cells = 3 , dataset = 'cifar' )
110
110
111
111
device = torch .device ("cuda:0" if torch .cuda .is_available () else "cpu" )
112
112
#if torch.cuda.device_count() > 1:
@@ -163,7 +163,7 @@ def evaluate_and_save_results(
163
163
164
164
with torch .no_grad ():
165
165
for images , labels in valid_loader :
166
- print (labels )
166
+ # print(labels)
167
167
images , labels = images .to (device ), labels .to (device )
168
168
outputs = model (images )
169
169
outputs = torch .softmax (outputs , dim = 1 )
0 commit comments