|
1 | 1 | # other NAS
|
2 |
| -| Title | Year | Source | Description | |
3 |
| -| :---- | ---: | :----- | :---------- | |
| 2 | +| Title | Year | Source | Description | |
| 3 | +| :----------------------------------------------------- | ---: | :--------------------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------- | |
| 4 | +| Neural Architecture Search with Reinforcement Learning | 2014 | [paper](https://arxiv.org/abs/1611.01578) | Поиск архитектуры сети с использованием обучения с подкреплением с основой на RNN | |
| 5 | +| Handbook of Evolutionary Computation | 1997 | [paper](https://www.taylorfrancis.com/books/edit/10.1201/9780367802486/handbook-evolutionary-computation-fogel-michalewicz-thomas-baeck) | --- | |
4 | 6 |
|
5 | 7 |
|
6 | 8 | # NES
|
7 |
| -| Title | Year | Source | Description | |
8 |
| -| :---- | ---: | :----- | :---------- | |
| 9 | +| Title | Year | Source | Description | |
| 10 | +| :------------------------------------------------------------------ | ---: | :------------------------------------------------------------------------------------------------------------- | :---------------------------------------------------------------------------------------------------------------------------------------- | |
| 11 | +| Neural Ensemble Search for Uncertainty Estimation and Dataset Shift | 2021 | [paper](https://proceedings.neurips.cc/paper_files/paper/2021/file/41a6fd31aa2e75c3c6d427db3d17e Представлены два метода построения ансамбля нейронных моделей в случае сдвига в данных, также есть подробный обзор статей посвященных NES ы ы ы ы ы ы ы ы | |
9 | 12 |
|
10 | 13 | # ENAS
|
11 | 14 | | Title | Year | Source | Description |
|
|
17 | 20 |
|
18 | 21 | # Surrogate assisted ENAS
|
19 | 22 |
|
20 |
| -| Title | Year | Source | Description | |
21 |
| -| :------------------------------------------------------------------------------------------------------------------------------------------ | ---: | :--------------------------------------------------------------------------------- | :---------- | |
22 |
| -| Similarity surrogate-assisted evolutionary neural architecture search with dual encoding strategy | 2024 | [paper](https://www.aimspress.com/aimspress-data/era/2024/2/PDF/era-32-02-050.pdf) | - | |
23 |
| -| Surrogate-Assisted Evolutionary Deep Learning Using an End-to-End Random Forest-Based Performance Predictor | 2019 | [paper](https://ieeexplore.ieee.org/abstract/document/8744404) | - | |
24 |
| -| A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions | 2021 | [paper](https://arxiv.org/pdf/2006.02903) | - | |
25 |
| -| NSgGANetV2: Evolutionary Multi-Objective Surrogate-Assisted Neural Architecture Search | 2020 | [paper](https://arxiv.org/pdf/2007.10396) | - | |
26 |
| -| MoSegNAS: Surrogate-assisted Multi-objective Neural Architecture Search for Real-time Semantic Segmentation | 2022 | [paper](https://arxiv.org/pdf/2208.06820) | - | |
27 |
| -| Convolutional Neural Networks based Lung Nodule Classification: A Surrogate-Assisted Evolutionary Algorithm for Hyperparameter Optimization | 2015 | [paper](https://shiruipan.github.io/publication/tevc-21-zhang/tevc-21-zhang.pdf) | - | |
28 |
| -| A Survey on Evolutionary Neural Architecture Search | 2022 | [paper](https://arxiv.org/pdf/2008.10937) | - | |
| 23 | +| Title | Year | Source | Description | |
| 24 | +| :------------------------------------------------------------------------------------------------------------------------------------------ | ---: | :--------------------------------------------------------------------------------- | :---------------------------------------------------------------------------------- | |
| 25 | +| Similarity surrogate-assisted evolutionary neural architecture search with dual encoding strategy | 2024 | [paper](https://www.aimspress.com/aimspress-data/era/2024/2/PDF/era-32-02-050.pdf) | Представлен алгоритм, оценивающий схожесть архитектуры, но только для одной функции | |
| 26 | +| Surrogate-Assisted Evolutionary Deep Learning Using an End-to-End Random Forest-Based Performance Predictor | 2019 | [paper](https://ieeexplore.ieee.org/abstract/document/8744404) | - | |
| 27 | +| A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions | 2021 | [paper](https://arxiv.org/pdf/2006.02903) | - | |
| 28 | +| NSgGANetV2: Evolutionary Multi-Objective Surrogate-Assisted Neural Architecture Search | 2020 | [paper](https://arxiv.org/pdf/2007.10396) | - | |
| 29 | +| MoSegNAS: Surrogate-assisted Multi-objective Neural Architecture Search for Real-time Semantic Segmentation | 2022 | [paper](https://arxiv.org/pdf/2208.06820) | - | |
| 30 | +| Convolutional Neural Networks based Lung Nodule Classification: A Surrogate-Assisted Evolutionary Algorithm for Hyperparameter Optimization | 2015 | [paper](https://shiruipan.github.io/publication/tevc-21-zhang/tevc-21-zhang.pdf) | - | |
| 31 | +| A Survey on Evolutionary Neural Architecture Search | 2022 | [paper](https://arxiv.org/pdf/2008.10937) | Обзор основных алгоритмов поиска архитектур нейронных сетей. | |
29 | 32 |
|
30 | 33 | # Others
|
31 | 34 |
|
32 |
| -| Title | Year | Source | Description | |
33 |
| -| :----------------------------------------------------------------------------------------- | ---: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :-------------------- | |
34 |
| -| DARTS: Differentiable Architecture Search | 2020 | [paper](https://arxiv.org/abs/1806.09055) | - | |
35 |
| -| Brain tumor detection using CNN, AlexNet & GoogLeNet ensembling learning approaches | 2023 | [paper](https://www.researchgate.net/publication/369308467_Brain_tumor_detection_using_CNN_AlexNet_GoogLeNet_ensembling_learning_approaches) | - | |
36 |
| -| Combining global and local surrogate models to accelerate evolutionary optimization | 2006 | [paper](https://www.researchgate.net/publication/3421747_Combining_global_and_local_surrogate_models_to_accelerate_evolutionary_optimization_IEEE_Trans_Syst_Man_Cybern_Part_C_Appl_Rev) | - | |
37 |
| -| A Density-Based Algorithm for Discovering Clusters<br>in Large Spatial Databaseswith Noise | 1996 | [paper](https://cdn.aaai.org/KDD/1996/KDD96-037.pdf) | DBSCAN original paper | |
38 |
| -| Adam: A Method for Stochastic Optimization | 2014 | [paper](https://arxiv.org/abs/1412.6980) | Adam original paper | |
| 35 | +| Title | Year | Source | Description | |
| 36 | +| :--------------------------------------------------------------------------------------------- | ---: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------- | |
| 37 | +| DARTS: Differentiable Architecture Search | 2020 | [paper](https://arxiv.org/abs/1806.09055) | - | |
| 38 | +| Brain tumor detection using CNN, AlexNet & GoogLeNet ensembling learning approaches | 2023 | [paper](https://www.researchgate.net/publication/369308467_Brain_tumor_detection_using_CNN_AlexNet_GoogLeNet_ensembling_learning_approaches) | - | |
| 39 | +| Combining global and local surrogate models to accelerate evolutionary optimization | 2006 | [paper](https://www.researchgate.net/publication/3421747_Combining_global_and_local_surrogate_models_to_accelerate_evolutionary_optimization_IEEE_Trans_Syst_Man_Cybern_Part_C_Appl_Rev) | - | |
| 40 | +| A Density-Based Algorithm for Discovering Clusters<br>in Large Spatial Databaseswith Noise | 1996 | [paper](https://cdn.aaai.org/KDD/1996/KDD96-037.pdf) | DBSCAN original paper | |
| 41 | +| Adam: A Method for Stochastic Optimization | 2014 | [paper](https://arxiv.org/abs/1412.6980) | Adam original paper | |
| 42 | +| Ensemble Classification and Regression-Recent Developments, Applications and Future Directions | 2016 | [paper](https://www.researchgate.net/profile/Le-Zhang-61/publication/290476291_Ensemble_Classification_and_Regression-Recent_Developments_Applications_and_Future_Directions_Review_Article/links/5c0a1b8fa6fdcc494fdf7e43/Ensemble-Classification-and-Regression-Recent-Developments-Applications-and-Future-Directions-Review-Article.pdf) | Рассказывается о преимуществах ансамблей над одиночными моделями при различном использовании. | |
| 43 | +| Semi-Supervised Classification with Graph Convolutional Networks | 2016 | [paper](https://arxiv.org/abs/1609.02907) | Оригинальная статья посвященная GCN | |
0 commit comments