|
19 | 19 |
|
20 | 20 | This repository implements an educational project for the Bayesian Multimodeling course. It implements algorithms for sampling from various distributions, using the implicit reparameterization trick.
|
21 | 21 |
|
22 |
| -## Описание |
23 |
| - |
24 |
| -В этом репозитории реализован учебный проект для курса Байесовское мультимоделирование. В нем реализуются алгоритмы сэмплирования из различных распределений, используя implicit reparametriation trick. |
| 22 | +## Scope |
| 23 | +We plan to implement the following distributions in our library: |
| 24 | +- Gaussian normal distribution (*) |
| 25 | +- Dirichlet distribution (Beta distributions)(\*) |
| 26 | +- Sampling from a mixture of distributions |
| 27 | +- Sampling from the Student's t-distribution (**) (\*) |
| 28 | +- Sampling from an arbitrary factorized distribution (***) |
| 29 | + |
| 30 | +(\*) - this distribution is already implemented in torch using the explicit reparameterization trick, we will implement it for comparison |
| 31 | + |
| 32 | +(\*\*) - this distribution is added as a backup, their inclusion is questionable |
| 33 | + |
| 34 | +(\*\*\*) - this distribution is not very clear in implementation, its inclusion is questionable |
| 35 | + |
| 36 | +## Stack |
| 37 | + |
| 38 | +We plan to inherit from the torch.distribution.Distribution class, so we need to implement all the methods that are present in that class. |
| 39 | + |
| 40 | +## Usage |
| 41 | +In this example, we demonstrate the application of our library using a Variational Autoencoder (VAE) model, where the latent layer is modified by a normal distribution. |
| 42 | +``` |
| 43 | +>>> import torch.distributions.implicit as irt |
| 44 | +>>> params = Encoder(inputs) |
| 45 | +>>> gauss = irt.Normal(*params) |
| 46 | +>>> deviated = gauss.rsample() |
| 47 | +>>> outputs = Decoder(deviated) |
| 48 | +``` |
| 49 | +In this example, we demonstrate the use of a mixture of distributions using our library. |
| 50 | +``` |
| 51 | +>>> import irt |
| 52 | +>>> params = Encoder(inputs) |
| 53 | +>>> mix = irt.Mixture([irt.Normal(*params), irt.Dirichlet(*params)]) |
| 54 | +>>> deviated = mix.rsample() |
| 55 | +>>> outputs = Decoder(deviated) |
| 56 | +``` |
25 | 57 |
|
26 | 58 | ## Links
|
27 | 59 | - [LinkReview](https://github.com/intsystems/implitic-reparametrization-trick/blob/main/linkreview.md)
|
|
0 commit comments