|
912 | 912 | "print(f'Results (pre-filtered) count: {results_df.shape[0]}')\n", |
913 | 913 | "\n", |
914 | 914 | "# Optionally filter out results we want to replace\n", |
915 | | - "#results_df = results_df[~(results_df['method'] == 'ebm')]\n", |
| 915 | + "#results_df = results_df[results_df['method'] != 'ebm']\n", |
916 | 916 | "#results_df = results_df[~((results_df['method'] == 'ebm') & (results_df['meta'] == '{}'))]\n", |
917 | 917 | "print(f'Results (post-filtered) count: {results_df.shape[0]}')" |
918 | 918 | ] |
|
949 | 949 | "metadata": {}, |
950 | 950 | "outputs": [], |
951 | 951 | "source": [ |
952 | | - "# Optionally filter out any incomplete datasets\n", |
953 | | - "#results_df = results_df[~(results_df['task'] == 'Devnagari-Script')]\n", |
954 | | - "print(f'Final count: {results_df.shape[0]}')\n", |
955 | | - "\n", |
956 | | - "\n", |
957 | 952 | "types_df = results_df[results_df['name'].isin(['auc', 'ovo_auc', 'nrmse'])]\n", |
958 | 953 | "task_to_type = types_df.groupby('task')['name'].first().map({'auc': 'binary', 'ovo_auc': 'multiclass', 'nrmse': 'regression'})\n", |
959 | 954 | "results_df['type'] = results_df['task'].map(task_to_type).fillna('')\n", |
960 | 955 | "\n", |
961 | 956 | "flip = ['r2', 'auc', 'precision', 'recall', 'accuracy', 'bal_acc', 'ovo_auc', 'ovr_auc', 'mprecision', 'mrecall', 'maccuracy', 'mbal_acc']\n", |
962 | 957 | "condition = results_df['name'].isin(flip)\n", |
963 | | - "results_df.loc[condition, 'num_val'] = -results_df.loc[condition, 'num_val']" |
| 958 | + "results_df.loc[condition, 'num_val'] = -results_df.loc[condition, 'num_val']\n", |
| 959 | + "\n", |
| 960 | + "\n", |
| 961 | + "# Optionally filter out any incomplete datasets\n", |
| 962 | + "#results_df = results_df[results_df['task'] != 'Devnagari-Script']\n", |
| 963 | + "#results_df = results_df[results_df['type'] == 'regression']\n", |
| 964 | + "print(f'Final count: {results_df.shape[0]}')" |
964 | 965 | ] |
965 | 966 | }, |
966 | 967 | { |
|
0 commit comments