|
| 1 | +## A example using Textual Inversion method to personalize text2image |
| 2 | + |
| 3 | +**note**: the example is integrating INC in progress. |
| 4 | + |
| 5 | +[Textual inversion](https://arxiv.org/abs/2208.01618) is a method to personalize text2image models like stable diffusion on your own images._By using just 3-5 images new concepts can be taught to Stable Diffusion and the model personalized on your own images_ |
| 6 | +The `textual_inversion.py` script shows how to implement the training procedure and adapt it for stable diffusion. |
| 7 | + |
| 8 | +### Installing the dependencies |
| 9 | + |
| 10 | +Before running the scripts, make sure to install the library's training dependencies: |
| 11 | + |
| 12 | +```bash |
| 13 | +pip install -r requirements.txt |
| 14 | +``` |
| 15 | + |
| 16 | +### Nezha cartoon example |
| 17 | + |
| 18 | +You need to accept the model license before downloading or using the weights. In this example we'll use model version `v1-4`, so you'll need to visit [its card](https://huggingface.co/CompVis/stable-diffusion-v1-4), read the license and tick the checkbox if you agree. |
| 19 | + |
| 20 | +You have to be a registered user in 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to [this section of the documentation](https://huggingface.co/docs/hub/security-tokens). |
| 21 | + |
| 22 | +Run the following command to authenticate your token |
| 23 | + |
| 24 | +```bash |
| 25 | +huggingface-cli login |
| 26 | +``` |
| 27 | + |
| 28 | +If you have already cloned the repo, then you won't need to go through these steps. |
| 29 | + |
| 30 | +<br> |
| 31 | + |
| 32 | +Now let's get our dataset. We just use one picture of nezha which is a screen shot from the `52'51` of the `Nezha: Birth of the Demon Child` movie, and save it to the `./nezha` directory. The picture show below: |
| 33 | + |
| 34 | + |
| 35 | + |
| 36 | +#### finetune with CPU using IPEX |
| 37 | + |
| 38 | +The following script shows how to use CPU with BF16 |
| 39 | + |
| 40 | +```bash |
| 41 | +export MODEL_NAME="CompVis/stable-diffusion-v1-4" |
| 42 | +export DATA_DIR="./nezha" |
| 43 | + |
| 44 | +# add use_bf16 |
| 45 | +python textual_inversion_ipex.py \ |
| 46 | + --pretrained_model_name_or_path=$MODEL_NAME \ |
| 47 | + --train_data_dir=$DATA_DIR \ |
| 48 | + --learnable_property="object" \ |
| 49 | + --placeholder_token="nezha" --initializer_token="cartoon" \ |
| 50 | + --resolution=512 \ |
| 51 | + --train_batch_size=1 \ |
| 52 | + --gradient_accumulation_steps=4 \ |
| 53 | + --use_bf16 \ |
| 54 | + --max_train_steps=3000 \ |
| 55 | + --learning_rate=5.0e-04 --scale_lr \ |
| 56 | + --lr_scheduler="constant" \ |
| 57 | + --lr_warmup_steps=0 \ |
| 58 | + --output_dir="nezha_output" |
| 59 | +``` |
| 60 | + |
| 61 | +#### finetune with GPU using accelerate |
| 62 | + |
| 63 | +Initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: |
| 64 | + |
| 65 | +```bash |
| 66 | +accelerate config |
| 67 | +``` |
| 68 | + |
| 69 | +And launch the training using |
| 70 | + |
| 71 | +```bash |
| 72 | +export MODEL_NAME="CompVis/stable-diffusion-v1-4" |
| 73 | +export DATA_DIR="./nezha" |
| 74 | + |
| 75 | +accelerate launch textual_inversion.py \ |
| 76 | + --pretrained_model_name_or_path=$MODEL_NAME \ |
| 77 | + --train_data_dir=$DATA_DIR \ |
| 78 | + --learnable_property="object" \ |
| 79 | + --placeholder_token="nezha" --initializer_token="cartoon" \ |
| 80 | + --resolution=512 \ |
| 81 | + --train_batch_size=1 \ |
| 82 | + --gradient_accumulation_steps=4 \ |
| 83 | + --max_train_steps=3000 \ |
| 84 | + --learning_rate=5.0e-04 --scale_lr \ |
| 85 | + --lr_scheduler="constant" \ |
| 86 | + --lr_warmup_steps=0 \ |
| 87 | + --output_dir="nezha_output" |
| 88 | +``` |
| 89 | + |
| 90 | + |
| 91 | +### Inference |
| 92 | + |
| 93 | +Once you have trained a model using above command, the inference can be done simply using the `StableDiffusionPipeline`. Make sure to include the `placeholder_token` in your prompt. |
| 94 | + |
| 95 | +```python |
| 96 | +from diffusers import StableDiffusionPipeline |
| 97 | +import torch |
| 98 | + |
| 99 | +model_id = "nezha_output" |
| 100 | + |
| 101 | +# use gpu |
| 102 | +pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") |
| 103 | + |
| 104 | +# use cpu |
| 105 | +# pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float) |
| 106 | + |
| 107 | +prompt = "a graffiti in a wall with a nezha on it" |
| 108 | + |
| 109 | +image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] |
| 110 | + |
| 111 | +image.save("./generated_images/graffiti.png") |
| 112 | +``` |
| 113 | + |
| 114 | +one of the inference result shows below: |
| 115 | + |
| 116 | + |
| 117 | + |
0 commit comments