You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+9-9Lines changed: 9 additions & 9 deletions
Original file line number
Diff line number
Diff line change
@@ -5,7 +5,7 @@ Intel® Neural Compressor
5
5
<h3> An open-source Python library supporting popular model compression techniques on all mainstream deep learning frameworks (TensorFlow, PyTorch, ONNX Runtime, and MXNet)</h3>
@@ -21,9 +21,9 @@ In particular, the tool provides the key features, typical examples, and open co
21
21
22
22
* Support a wide range of Intel hardware such as [Intel Xeon Scalable processor](https://www.intel.com/content/www/us/en/products/details/processors/xeon/scalable.html), [Intel Xeon CPU Max Series](https://www.intel.com/content/www/us/en/products/details/processors/xeon/max-series.html), [Intel Data Center GPU Flex Series](https://www.intel.com/content/www/us/en/products/details/discrete-gpus/data-center-gpu/flex-series.html), and [Intel Data Center GPU Max Series](https://www.intel.com/content/www/us/en/products/details/discrete-gpus/data-center-gpu/max-series.html) with extensive testing; support AMD CPU, ARM CPU, and NVidia GPU through ONNX Runtime with limited testing
23
23
24
-
* Validate more than 10,000 models such as [Bloom-176B](/examples/pytorch/nlp/huggingface_models/language-modeling/quantization/ptq_static/ipex/smooth_quant), [OPT-6.7B](/examples/pytorch/nlp/huggingface_models/language-modeling/quantization/ptq_static/ipex/smooth_quant), [Stable Diffusion](/examples/pytorch/nlp/huggingface_models/text-to-image/quantization), [GPT-J](/examples/pytorch/nlp/huggingface_models/language-modeling/quantization/ptq_static/fx), [BERT-Large](/examples/pytorch/nlp/huggingface_models/text-classification/quantization/ptq_static/fx), and [ResNet50](/examples/pytorch/image_recognition/torchvision_models/quantization/ptq/cpu/fx) from popular model hubs such as [Hugging Face](https://huggingface.co/), [Torch Vision](https://pytorch.org/vision/stable/index.html), and [ONNX Model Zoo](https://github.com/onnx/models#models), by leveraging zero-code optimization solution [Neural Coder](/neural_coder#what-do-we-offer) and automatic [accuracy-driven](/docs/source/design.md#workflow) quantization strategies
24
+
* Validate popular LLMs such as LLama2, [LLama](examples/onnxrt/nlp/huggingface_model/text_generation/llama/quantization/ptq_static), [MPT](https://github.com/intel/intel-extension-for-transformers/blob/main/examples/huggingface/pytorch/text-generation/quantization/README.md), [Falcon](https://github.com/intel/intel-extension-for-transformers/blob/main/examples/huggingface/pytorch/language-modeling/quantization/README.md), [GPT-J](/examples/pytorch/nlp/huggingface_models/language-modeling/quantization/ptq_static/fx), [Bloom](/examples/pytorch/nlp/huggingface_models/language-modeling/quantization/ptq_static/ipex/smooth_quant), [OPT](/examples/pytorch/nlp/huggingface_models/language-modeling/quantization/ptq_static/ipex/smooth_quant), and more than 10,000 broad models such as [Stable Diffusion](/examples/pytorch/nlp/huggingface_models/text-to-image/quantization), [BERT-Large](/examples/pytorch/nlp/huggingface_models/text-classification/quantization/ptq_static/fx), and [ResNet50](/examples/pytorch/image_recognition/torchvision_models/quantization/ptq/cpu/fx) from popular model hubs such as [Hugging Face](https://huggingface.co/), [Torch Vision](https://pytorch.org/vision/stable/index.html), and [ONNX Model Zoo](https://github.com/onnx/models#models), by leveraging zero-code optimization solution [Neural Coder](/neural_coder#what-do-we-offer) and automatic [accuracy-driven](/docs/source/design.md#workflow) quantization strategies
25
25
26
-
* Collaborate with cloud marketplace such as [Google Cloud Platform](https://console.cloud.google.com/marketplace/product/bitnami-launchpad/inc-tensorflow-intel?project=verdant-sensor-286207), [Amazon Web Services](https://aws.amazon.com/marketplace/pp/prodview-yjyh2xmggbmga#pdp-support), and [Azure](https://azuremarketplace.microsoft.com/en-us/marketplace/apps/bitnami.inc-tensorflow-intel), software platforms such as [Alibaba Cloud](https://www.intel.com/content/www/us/en/developer/articles/technical/quantize-ai-by-oneapi-analytics-on-alibaba-cloud.html) and [Tencent TACO](https://new.qq.com/rain/a/20221202A00B9S00), and open AI ecosystem such as [Hugging Face](https://huggingface.co/blog/intel), [PyTorch](https://pytorch.org/tutorials/recipes/intel_neural_compressor_for_pytorch.html), [ONNX](https://github.com/onnx/models#models), and [Lightning AI](https://github.com/Lightning-AI/lightning/blob/master/docs/source-pytorch/advanced/post_training_quantization.rst)
26
+
* Collaborate with cloud marketplace such as [Google Cloud Platform](https://console.cloud.google.com/marketplace/product/bitnami-launchpad/inc-tensorflow-intel?project=verdant-sensor-286207), [Amazon Web Services](https://aws.amazon.com/marketplace/pp/prodview-yjyh2xmggbmga#pdp-support), and [Azure](https://azuremarketplace.microsoft.com/en-us/marketplace/apps/bitnami.inc-tensorflow-intel), software platforms such as [Alibaba Cloud](https://www.intel.com/content/www/us/en/developer/articles/technical/quantize-ai-by-oneapi-analytics-on-alibaba-cloud.html), [Tencent TACO](https://new.qq.com/rain/a/20221202A00B9S00) and [Microsoft Olive](https://github.com/microsoft/Olive), and open AI ecosystem such as [Hugging Face](https://huggingface.co/blog/intel), [PyTorch](https://pytorch.org/tutorials/recipes/intel_neural_compressor_for_pytorch.html), [ONNX](https://github.com/onnx/models#models), [ONNX Runtime](https://github.com/microsoft/onnxruntime), and [Lightning AI](https://github.com/Lightning-AI/lightning/blob/master/docs/source-pytorch/advanced/post_training_quantization.rst)
> More documentations can be found at [User Guide](./docs/source/user_guide.md).
140
140
141
141
## Selected Publications/Events
142
+
* arXiv: [Optimize Weight Rounding via Signed Gradient Descent for the Quantization of LLMs](https://arxiv.org/abs/2309.05516) (Sep 2023)
142
143
* Post on Social Media: [ONNXCommunityMeetup2023: INT8 Quantization for Large Language Models with Intel Neural Compressor](https://www.youtube.com/watch?v=luYBWA1Q5pQ) (July 2023)
143
144
* Blog by Intel: [Accelerate Llama 2 with Intel AI Hardware and Software Optimizations](https://www.intel.com/content/www/us/en/developer/articles/news/llama2.html) (July 2023)
144
-
* Blog on Medium: [Quantization Accuracy Loss Diagnosis with Neural Insights](https://medium.com/@NeuralCompressor/quantization-accuracy-loss-diagnosis-with-neural-insights-5d73f4ca2601) (Aug 2023)
145
-
* Blog on Medium: [Faster Stable Diffusion Inference with Intel Extension for Transformers](https://medium.com/intel-analytics-software/faster-stable-diffusion-inference-with-intel-extension-for-transformers-on-intel-platforms-7e0f563186b0) (July 2023)
146
145
* NeurIPS'2022: [Fast Distilbert on CPUs](https://arxiv.org/abs/2211.07715) (Oct 2022)
147
146
* NeurIPS'2022: [QuaLA-MiniLM: a Quantized Length Adaptive MiniLM](https://arxiv.org/abs/2210.17114) (Oct 2022)
Welcome to raise any interesting research ideas on model compression techniques and feel free to reach us ([inc.maintainers@intel.com](mailto:inc.maintainers@intel.com)). Look forward to our collaborations on Intel Neural Compressor!
157
+
## Communication
158
+
-[GitHub Issues](https://github.com/intel/neural-compressor/issues): mainly for bugs report, new feature request, question asking, etc.
159
+
-[Email](mailto:inc.maintainers@intel.com): welcome to raise any interesting research ideas on model compression techniques by email for collaborations.
160
+
-[WeChat group](/docs/source/imgs/wechat_group.jpg): scan the QA code to join the technical discussion.
Copy file name to clipboardExpand all lines: docs/source/publication_list.md
+3-2Lines changed: 3 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -1,6 +1,7 @@
1
-
Full Publications/Events (74)
1
+
Full Publications/Events (75)
2
2
==========
3
-
## 2023 (20)
3
+
## 2023 (21)
4
+
* arXiv: [Optimize Weight Rounding via Signed Gradient Descent for the Quantization of LLMs](https://arxiv.org/abs/2309.05516) (Sep 2023)
4
5
* Blog on Medium: [Quantization Accuracy Loss Diagnosis with Neural Insights](https://medium.com/@NeuralCompressor/quantization-accuracy-loss-diagnosis-with-neural-insights-5d73f4ca2601) (Aug 2023)
5
6
* Blog on Medium: [Faster Stable Diffusion Inference with Intel Extension for Transformers](https://medium.com/intel-analytics-software/faster-stable-diffusion-inference-with-intel-extension-for-transformers-on-intel-platforms-7e0f563186b0) (July 2023)
6
7
* Post on Social Media: [ONNXCommunityMeetup2023: INT8 Quantization for Large Language Models with Intel Neural Compressor](https://www.youtube.com/watch?v=luYBWA1Q5pQ) (July 2023)
0 commit comments