34
34
from neural_compressor .experimental import Quantization , common
35
35
from neural_compressor .data import DATALOADERS
36
36
from neural_compressor .utils .utility import dump_elapsed_time
37
+ from neural_compressor .utils import logger
37
38
38
39
39
40
INPUT_TENSOR_NAMES = ['input_tokens:0' ]
70
71
"num_inter" , 2 ,
71
72
"""Number of inter op parallelism thread to use.""" )
72
73
flags .DEFINE_integer (
73
- "num_intra" , 56 ,
74
+ "num_intra" , 28 ,
74
75
"""Number of intra op parallelism thread to use.""" )
75
76
flags .DEFINE_integer (
76
- "warmup_steps" , 5 ,
77
+ "warmup_steps" , 10 ,
77
78
"""Number of warmup steps before benchmarking the model.""" )
78
79
flags .DEFINE_integer (
79
80
"iters" , - 1 ,
@@ -94,7 +95,7 @@ def load_graph(file_name):
94
95
text_format .Merge (f .read (), graph_def )
95
96
with tf .Graph ().as_default () as graph :
96
97
tf .import_graph_def (graph_def , name = '' )
97
- tf . compat . v1 . logging .info ('Loaded graph from: ' + file_name )
98
+ logger .info ('Loaded graph from: ' + file_name )
98
99
return graph
99
100
100
101
def _trim_and_decode (ids , subtokenizer ):
@@ -227,25 +228,20 @@ def eval_func(infer_graph):
227
228
assert iteration <= len (dataloader ), \
228
229
"'iteration' must be less than or equal to len(dataloader)."
229
230
if FLAGS .mode == "benchmark" :
230
- tf .compat .v1 .logging .info \
231
- ('******** Start to get performance of the model ********' )
231
+ logger .info ('******** Start to get performance of the model ********' )
232
232
else :
233
- tf .compat .v1 .logging .info \
234
- ('******** Start to get accuracy and performance of the model ********' )
233
+ logger .info ('******** Start to get accuracy and performance of the model ********' )
235
234
if warmup > 0 :
236
- tf .compat .v1 .logging .info \
237
- ('Start to do warm-up with {}/{} (steps/total_iterations) before getting performance.' \
238
- .format (warmup , iteration ))
235
+ logger .info ('Start to do warm-up with {}/{} (steps/total_iterations) before getting performance.' \
236
+ .format (warmup , iteration ))
239
237
else :
240
- tf .compat .v1 .logging .info \
241
- ('Start to get performance with {} iterations.' .format (iteration ))
238
+ logger .info ('Start to get performance with {} iterations.' .format (iteration ))
242
239
for idx , (input_data , _ ) in enumerate (dataloader ):
243
240
if idx < iteration :
244
241
if idx == warmup and warmup > 0 :
245
- tf .compat .v1 .logging .info ('The warm-up is over.' )
246
- tf .compat .v1 .logging .info \
247
- ('Start to get performance with {}/{} (steps/total_iterations).' \
248
- .format (iteration - warmup , iteration ))
242
+ logger .info ('The warm-up is over.' )
243
+ logger .info ('Start to get performance with {}/{} (steps/total_iterations).' \
244
+ .format (iteration - warmup , iteration ))
249
245
feed_dict = {input_tensors [0 ]: input_data }
250
246
time_start = time .time ()
251
247
dec_tensor = sess .run (output_tensors , feed_dict )
@@ -255,9 +251,9 @@ def eval_func(infer_graph):
255
251
else :
256
252
break
257
253
latency = np .array (time_list [warmup :]).mean () / FLAGS .batch_size
258
- tf . compat . v1 . logging .info ('Batch-size = {}' .format (FLAGS .batch_size ))
259
- tf . compat . v1 . logging .info ('Latency: {:.3f} ms' .format (latency * 1000 ))
260
- tf . compat . v1 . logging .info ('Throughput: {:.3f} items/sec' .format (1. / latency ))
254
+ logger .info ('Batch-size = {}' .format (FLAGS .batch_size ))
255
+ logger .info ('Latency: {:.3f} ms' .format (latency * 1000 ))
256
+ logger .info ('Throughput: {:.3f} items/sec' .format (1. / latency ))
261
257
262
258
if FLAGS .mode != "benchmark" :
263
259
"""Write translations to file and calculate BLEU score."""
@@ -269,8 +265,7 @@ def eval_func(infer_graph):
269
265
for k ,otr in enumerate (itr ):
270
266
translation_count += 1
271
267
decoded_translations .append (_trim_and_decode (otr , subtokenizer ))
272
- tf .compat .v1 .logging .info \
273
- ('Total number of sentences translated:%d' % (translation_count ))
268
+ logger .info ('Total number of sentences translated:%d' % (translation_count ))
274
269
tf .io .gfile .makedirs (os .path .dirname (FLAGS .file_out ))
275
270
with tf .io .gfile .GFile (FLAGS .file_out , "w" ) as f :
276
271
for i in sorted_keys :
@@ -279,14 +274,16 @@ def eval_func(infer_graph):
279
274
global uregex
280
275
uregex = UnicodeRegex ()
281
276
score_uncased = bleu_wrapper (FLAGS .reference_file , FLAGS .file_out , False )
282
- tf . compat . v1 . logging .info ("Case-insensitive results: {:.8f}" .format (score_uncased ))
277
+ logger .info ("Case-insensitive results: {:.8f}" .format (score_uncased ))
283
278
score_cased = bleu_wrapper (FLAGS .reference_file , FLAGS .file_out , True )
284
- tf . compat . v1 . logging .info ("Case-sensitive results: {:.8f}" .format (score_cased ))
279
+ logger .info ("Case-sensitive results: {:.8f}" .format (score_cased ))
285
280
assert FLAGS .bleu_variant in ["uncased" , "cased" ], \
286
281
"'bleu_variant' must be one of two options: 'uncased'/'cased'."
287
282
if FLAGS .bleu_variant == "uncased" :
283
+ logger .info ("Accuracy: {:.8f}" .format (score_uncased ))
288
284
return score_uncased
289
285
else :
286
+ logger .info ("Accuracy: {:.8f}" .format (score_cased ))
290
287
return score_cased
291
288
292
289
def main (unused_args ):
0 commit comments