|
| 1 | +import argparse |
| 2 | + |
| 3 | +from datasets import load_dataset |
| 4 | +from transformers import LlamaForCausalLM, LlamaTokenizer, AutoConfig |
| 5 | + |
| 6 | +import torch |
| 7 | +from torch.nn.functional import pad |
| 8 | +from torch.utils.data import DataLoader |
| 9 | + |
| 10 | +import intel_extension_for_pytorch as ipex |
| 11 | + |
| 12 | +parser = argparse.ArgumentParser('LLaMA generation script (int8 path)', add_help=False) |
| 13 | + |
| 14 | +parser.add_argument( |
| 15 | + "-m", "--model-id", default=None, type=str, required=True, help="your llama model" |
| 16 | +) |
| 17 | +parser.add_argument( |
| 18 | + "--sq-recipes", default=None, type=str, required=True, help="llama2-7b or llama2-13b" |
| 19 | +) |
| 20 | +parser.add_argument( |
| 21 | + "--max-new-tokens", default=32, type=int, help="output max new tokens" |
| 22 | +) |
| 23 | +parser.add_argument("--dataset", nargs="?", default="NeelNanda/pile-10k") |
| 24 | +parser.add_argument("--output-dir", nargs="?", default="./saved_results") |
| 25 | + |
| 26 | +parser.add_argument( |
| 27 | + "--int8-bf16-mixed", |
| 28 | + action="store_true", |
| 29 | + help="by default it is int8-fp32 mixed, to enable int8 mixed amp bf16 (work on platforms like SPR)", |
| 30 | +) |
| 31 | +parser.add_argument("--input-tokens", default="32", type=str) |
| 32 | +parser.add_argument("--prompt", default=None, type=str) |
| 33 | +parser.add_argument("--padding", action="store_true", help="whether do padding in calib_dataloader") |
| 34 | +parser.add_argument("--batch-size", default=1, type=int, help="batch size") |
| 35 | +parser.add_argument("--alpha", default=0.8, type=float, help="alpha value for smoothquant") |
| 36 | +parser.add_argument("--greedy", action="store_true") |
| 37 | + |
| 38 | +args = parser.parse_args() |
| 39 | + |
| 40 | +try: |
| 41 | + ipex._C.disable_jit_linear_repack() |
| 42 | +except Exception: |
| 43 | + pass |
| 44 | + |
| 45 | +# amp autocast |
| 46 | +if args.int8_bf16_mixed: |
| 47 | + amp_enabled = True |
| 48 | + amp_dtype = torch.bfloat16 |
| 49 | +else: |
| 50 | + amp_enabled = False |
| 51 | + amp_dtype = torch.float32 |
| 52 | + |
| 53 | +num_beams = 1 if args.greedy else 4 |
| 54 | + |
| 55 | +# load model |
| 56 | +config = AutoConfig.from_pretrained(args.model_id, torchscript=True) |
| 57 | +if not hasattr(config, "text_max_length") and args.prompt is None: |
| 58 | + config.text_max_length = int(args.input_tokens) + int(args.max_new_tokens) |
| 59 | + |
| 60 | +user_model = LlamaForCausalLM.from_pretrained( |
| 61 | + args.model_id, config=config, low_cpu_mem_usage=True, torch_dtype=torch.float |
| 62 | +) |
| 63 | + |
| 64 | +tokenizer = LlamaTokenizer.from_pretrained(args.model_id) |
| 65 | +print("Data type of the model:", user_model.dtype) |
| 66 | + |
| 67 | +# dummy past key value |
| 68 | +beam_idx_tmp = torch.zeros( |
| 69 | + (2048, int(args.batch_size * num_beams)), dtype=torch.long |
| 70 | +).contiguous() |
| 71 | +global_past_key_value = [ |
| 72 | + ( |
| 73 | + torch.zeros(1, 0, 0, 1, dtype=torch.long).contiguous(), |
| 74 | + torch.zeros( |
| 75 | + [ |
| 76 | + 1, |
| 77 | + user_model.config.num_attention_heads, |
| 78 | + 1, |
| 79 | + int( |
| 80 | + user_model.config.hidden_size |
| 81 | + / user_model.config.num_attention_heads |
| 82 | + ), |
| 83 | + ] |
| 84 | + ).contiguous(), |
| 85 | + torch.zeros( |
| 86 | + [ |
| 87 | + 1, |
| 88 | + user_model.config.num_attention_heads, |
| 89 | + 1, |
| 90 | + int( |
| 91 | + user_model.config.hidden_size |
| 92 | + / user_model.config.num_attention_heads |
| 93 | + ), |
| 94 | + ] |
| 95 | + ).contiguous(), |
| 96 | + beam_idx_tmp, |
| 97 | + ) |
| 98 | + for i in range(user_model.config.num_hidden_layers) |
| 99 | +] |
| 100 | + |
| 101 | + |
| 102 | +class Evaluator: |
| 103 | + |
| 104 | + def __init__(self, dataset, tokenizer, batch_size=1, pad_val=1, pad_max=512): |
| 105 | + self.dataset = dataset |
| 106 | + self.tokenizer = tokenizer |
| 107 | + self.batch_size = batch_size |
| 108 | + self.pad_val = pad_val |
| 109 | + self.pad_max = pad_max |
| 110 | + |
| 111 | + # tokenize the dataset |
| 112 | + self.dataset = self.dataset.map(self.tokenize_function, batched=True) |
| 113 | + self.dataset.set_format(type="torch", columns=["input_ids"]) |
| 114 | + |
| 115 | + @torch.no_grad() |
| 116 | + def tokenize_function(self, examples): |
| 117 | + if "prompt" in examples: |
| 118 | + example = self.tokenizer(examples["prompt"]) |
| 119 | + elif "text" in examples: |
| 120 | + example = self.tokenizer(examples["text"]) |
| 121 | + elif "code" in examples: |
| 122 | + example = self.tokenizer(examples["code"]) |
| 123 | + return example |
| 124 | + |
| 125 | + @torch.no_grad() |
| 126 | + def collate_batch(self, batch): |
| 127 | + position_ids_padded = [] |
| 128 | + input_ids_padded = [] |
| 129 | + last_ind = [] |
| 130 | + attention_mask_padded = [] |
| 131 | + for text in batch: |
| 132 | + input_ids = text["input_ids"] |
| 133 | + if not args.padding: |
| 134 | + input_ids = ( |
| 135 | + input_ids[: int(self.pad_max)] |
| 136 | + if len(input_ids) > int(self.pad_max) |
| 137 | + else input_ids |
| 138 | + ) #no_padding |
| 139 | + else: |
| 140 | + pad_len = self.pad_max - input_ids.shape[0] |
| 141 | + input_ids = pad(input_ids, (0, pad_len), value=self.pad_val) |
| 142 | + last_ind.append(input_ids.shape[0] - 1) |
| 143 | + attention_mask = torch.ones(len(input_ids)) |
| 144 | + position_ids = torch.arange(len(input_ids)) |
| 145 | + input_ids_padded.append(input_ids) |
| 146 | + attention_mask_padded.append(attention_mask) |
| 147 | + position_ids_padded.append(position_ids) |
| 148 | + return ( |
| 149 | + ( |
| 150 | + torch.vstack(input_ids_padded), |
| 151 | + torch.vstack(attention_mask_padded), |
| 152 | + torch.vstack(position_ids_padded), |
| 153 | + tuple(global_past_key_value), |
| 154 | + ), |
| 155 | + torch.tensor(last_ind), |
| 156 | + ) |
| 157 | + |
| 158 | + |
| 159 | +calib_dataset = load_dataset(args.dataset, split="train") |
| 160 | +user_model.eval() |
| 161 | +if args.sq_recipes == "llama2-7b": |
| 162 | + pad_max = 2048 |
| 163 | +elif args.sq_recipes == "llama2-13b": |
| 164 | + pad_max = 1024 |
| 165 | +else: |
| 166 | + pad_max = 512 |
| 167 | +calib_evaluator = Evaluator(calib_dataset, tokenizer, args.batch_size, pad_max=pad_max) |
| 168 | +calib_dataloader = DataLoader( |
| 169 | + calib_evaluator.dataset, |
| 170 | + batch_size=1, |
| 171 | + shuffle=False, |
| 172 | + collate_fn=calib_evaluator.collate_batch, |
| 173 | +) |
| 174 | + |
| 175 | + |
| 176 | +def calib_func(prepared_model): |
| 177 | + for i, ( |
| 178 | + (input_ids, attention_mask, position_ids, past_key_values), |
| 179 | + last_ind, |
| 180 | + ) in enumerate(calib_dataloader): |
| 181 | + if i == 512: |
| 182 | + break |
| 183 | + prepared_model( |
| 184 | + input_ids, |
| 185 | + attention_mask=attention_mask, |
| 186 | + position_ids=position_ids, |
| 187 | + past_key_values=past_key_values, |
| 188 | + ) |
| 189 | + |
| 190 | + |
| 191 | +example_inputs = None |
| 192 | +for i, ( |
| 193 | + (input_ids, attention_mask, position_ids, past_key_values), |
| 194 | + last_ind, |
| 195 | +) in enumerate(calib_dataloader): |
| 196 | + example_inputs = (input_ids, attention_mask, position_ids, past_key_values) |
| 197 | + break |
| 198 | + |
| 199 | +qconfig = ipex.quantization.get_smooth_quant_qconfig_mapping(alpha=args.alpha) |
| 200 | +user_model = ipex.optimize_transformers( |
| 201 | + user_model.eval(), |
| 202 | + dtype=amp_dtype, |
| 203 | + quantization_config=qconfig, |
| 204 | + inplace=True, |
| 205 | + deployment_mode=False, |
| 206 | +) |
| 207 | + |
| 208 | +# steps for SmoothQuant with Intel® Neural Compressor |
| 209 | +from neural_compressor import PostTrainingQuantConfig, quantization |
| 210 | + |
| 211 | +# quantization recipes |
| 212 | +excluded_precisions = [] if args.int8_bf16_mixed else ["bf16"] |
| 213 | +op_type_dict = {"add": {"weight": {"dtype": ["fp32"]}, "activation": {"dtype": ["fp32"]}}} |
| 214 | +recipes = {} |
| 215 | +if args.sq_recipes == "llama2-7b": |
| 216 | + recipes = {"smooth_quant": True, "smooth_quant_args": {'alpha': 'auto', 'folding': False, 'default_alpha': 0.8, |
| 217 | + 'auto_alpha_args': {"alpha_min": 0.8, "alpha_max": 0.99, |
| 218 | + "alpha_step": 0.01, |
| 219 | + "shared_criterion": "mean"}}} |
| 220 | +elif args.sq_recipes == "llama2-13b": |
| 221 | + recipes = {"smooth_quant": True, "smooth_quant_args": {'alpha': 'auto', 'folding': False, 'default_alpha': 0.8, |
| 222 | + 'auto_alpha_args': {"alpha_min": 0.75, "alpha_max": 0.99, |
| 223 | + "alpha_step": 0.01, |
| 224 | + "shared_criterion": "max"}}} |
| 225 | + |
| 226 | + |
| 227 | +conf = PostTrainingQuantConfig( |
| 228 | + backend="ipex", |
| 229 | + excluded_precisions=excluded_precisions, |
| 230 | + op_type_dict=op_type_dict, |
| 231 | + recipes=recipes, |
| 232 | + example_inputs=example_inputs, |
| 233 | +) |
| 234 | +q_model = quantization.fit( |
| 235 | + user_model, |
| 236 | + conf, |
| 237 | + calib_dataloader=calib_dataloader, |
| 238 | + calib_func=calib_func, |
| 239 | +) |
| 240 | +q_model.save(args.output_dir) |
0 commit comments