Skip to content

Commit 4db2658

Browse files
authored
Merge pull request #62 from vbedida79/patch-300623-1
e2e_inference: Updated Readme for 1.0.0 release
2 parents 4396a69 + 833eff8 commit 4db2658

File tree

1 file changed

+57
-16
lines changed

1 file changed

+57
-16
lines changed

e2e/inference/README.md

Lines changed: 57 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -1,19 +1,60 @@
1-
## Intel AI Inference E2E Solution for OpenShift
1+
# Overview
2+
Intel AI inference end-to-end solution with RHOCP is based on the Intel® Data Center GPU Flex Series provisioning, Intel® OpenVINO™, and [Red Hat OpenShift Data Science](https://www.redhat.com/en/technologies/cloud-computing/openshift/openshift-data-science) (RHODS) on RHOCP. There are two AI inference modes verified with Intel® Xeon® processors and Intel Data Center GPU Flex Series with RHOCP-4.12.
3+
* Interactive mode – RHODS provides OpenVINO based Jupyter Notebooks for users to interactively debug the inference applications or [optimize the models](https://docs.openvino.ai/2023.0/openvino_docs_MO_DG_Deep_Learning_Model_Optimizer_DevGuide.html) on RHOCP using data center GPU cards or Intel Xeon processors.
4+
* Deployment mode – [OpenVINO Model Sever](https://github.com/openvinotoolkit/model_server) (OVMS) can be used to deploy the inference workloads in data center and edge computing environments on RHOCP.
5+
## Prerequisites
6+
* Provisioned RHOCP 4.12 cluster. Follow steps [here](https://github.com/intel/intel-technology-enabling-for-openshift/tree/main#provisioning-rhocp-cluster).
7+
* Provisioning Intel Data Center GPU Flex Series [link](https://github.com/intel/intel-technology-enabling-for-openshift/tree/main#provisioning-intel-hardware-features-on-rhocp)
8+
* Setup node feature discovery (NFD). Follow the steps [here](https://github.com/intel/intel-technology-enabling-for-openshift/blob/main/nfd/README.md).
9+
* Setup machine configuration. Follow the steps [here](https://github.com/intel/intel-technology-enabling-for-openshift/blob/main/machine_configuration/README.md).
10+
* Setup out of tree drivers for Intel GPU provisioning. Follow the steps [here](https://github.com/intel/intel-technology-enabling-for-openshift/blob/main/machine_configuration/README.md).
11+
* Setup Intel device plugins operator and create Intel GPU device plugin [CR]([link](https://github.com/intel/intel-technology-enabling-for-openshift/blob/main/device_plugins/deploy_gpu.md))
12+
* Using Intel Data Center GPU Resource Exclusively [link](https://github.com/intel/intel-technology-enabling-for-openshift/blob/main/device_plugins/deploy_gpu.md#using-intel-data-center-gpu-resource-exclusively)
13+
## Install RHODS
14+
The Red Hat certified RHODS operator is published at [Red Hat Ecosystem Catalog](https://catalog.redhat.com/software/container-stacks/detail/63b85b573112fe5a95ee9a3a). You can use the command line interface (CLI) or web console to install it.
15+
### Install using CLI (To be added)
16+
### Install using web console
17+
1. On the RHOCP web console, click Operators → OperatorHub.
18+
2. Search RedHat OpenShift Data Science Operator and click Install. The operator is installed in the namespace redhat-ods-operator.
19+
### Verification
20+
1. Navigate to Operators → Installed Operators page.
21+
2. Ensure that in the redhat-ods-operator namespace, RedHat OpenShift Data Science Status is InstallSucceeded
22+
3. Click on ```Search -> Routes -> rhods-dashboard``` from the web console and access the RHODS UI link.
23+
Note: When installing the operator, the default ```kfdef``` Custom Resource (CR) is created. This CR enables the RHODS dashboard for users to browse and launch Jupyter Notebooks projects on an RHOCP cluster. Please refer to this [link](https://github.com/red-hat-data-services/odh-deployer) for more details about kfdef.
24+
## Install OpenVINO operator
25+
The OpenVINO operator is published at [Red Hat Ecosystem Catalog](https://catalog.redhat.com/software/container-stacks/detail/60649a56209af65d24b7ca9e). You can use the CLI or web console to install it.
26+
### Install using CLI (To be added)
27+
### Install using web console
28+
Follow this [link](https://github.com/openvinotoolkit/operator/blob/v1.1.0/docs/operator_installation.md) to install the operator via the web console.
29+
## Work with interactive mode
30+
To enable the interactive mode, the OpenVINO notebook CR needs to be created and integrated with RHODS.
31+
1. Click on the ```create Notebook``` option in this [link](https://github.com/red-hat-data-services/odh-deployer) from the web console and follow these [steps](https://github.com/openvinotoolkit/operator/blob/main/docs/notebook_in_rhods.md) to create the notebook CR.
32+
2. Enable Intel Data Center GPU
33+
**Note:** The Intel Data Center GPU option is not visible in the RHODS UI at this time of release. For more details, please refer to this [issue](https://github.com/opendatahub-io/odh-dashboard/issues/956). Until this issue is resolved, please follow the steps below to enable the Intel Data Center GPU.
34+
a. Search for the OpenVINO Notebook Server from web console ```Search -> Notebook -> Jupyter-nb-<ocp-user>``` in the namespace ```rhods-notebooks```.
35+
b. Navigate to notebook yaml and modify the yaml file according to the example shown below.
36+
```
37+
containers:
38+
name: jupyter-nb-<ocp-user-name>
39+
resources:
40+
limits:
41+
cpu: '14'
42+
gpu.intel.com/i915: '1'
43+
memory: 56Gi
44+
requests:
45+
cpu: '7'
46+
gpu.intel.com/i915: '1'
47+
memory: 56Gi
48+
```
49+
c. This operation respawns the notebook server to use the Intel Data Center GPU.
250

3-
### Overview
4-
Intel AI inference e2e solution for OCP is built upon Intel® dGPU provisioning for OpenShift and Intel® Xeon® processors. The two following AI inference modes are used to test with the Intel Data Center GPU Card provisioning:
5-
* **Interactive Mode**
6-
[Open Data Hub (ODH)](https://github.com/opendatahub-io) and [Red Hat OpenShift Data Science (RHODS)](https://www.redhat.com/en/technologies/cloud-computing/openshift/openshift-data-science) provides Intel® OpenVINO™ based [Jupiter Notebook](https://jupyter.org/) to help users interactively debug the inferencing applications or optimize the models with OCP using Intel Data Center GPU cards and Intel Xeon processors.
7-
* **Deployment Mode**
8-
[Intel OpenVINO™ Toolkit](https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html) and [Operator](https://github.com/openvinotoolkit/operator) provide the [OpenVINO Model Server (OVMS)](https://github.com/openvinotoolkit/model_server) for users to deploy their inferencing workload using Intel Data Center GPU cards and Intel Xeon processors on OCP cluster in cloud or edge environment.
51+
3. Run sample Jupyter Notebooks.
52+
Follow the [link](https://github.com/openvinotoolkit/operator/blob/main/docs/notebook_in_rhods.md) to execute the sample Jupyter Notebook There are 60+ sample notebooks available with this notebook image. For the details on the notebooks with Intel Data Center GPU, please check this [link](https://github.com/openvinotoolkit/openvino_notebooks).
53+
## Work with deployment mode
54+
1. From the web console, click on the ModelServer option in this [link](https://github.com/openvinotoolkit/operator/blob/v1.1.0/docs/operator_installation.md) and follow the [steps](https://github.com/openvinotoolkit/operator/blob/v1.1.0/docs/modelserver.md) to start the OVMS instance.
55+
2. To enable the Intel Data Center GPU, make sure to modify the OVMS instance options according to the screenshot below.
956

10-
`note: The verification on this mode is ongoing`
57+
* Add 2 screenshots
1158

12-
### Deploy Intel AI Inference E2E Solution
13-
14-
* **Install RHODS on OpenShift**
15-
* **Install Intel OpenVINO Toolkit Operator**
16-
17-
### Run Interactive Mode Demo
18-
19-
### Run Deployment Mode Demo
59+
## See Also
60+
[GPU accelerated demo with OpenVINO](https://www.youtube.com/watch?v=3fTz_k4JT2A)

0 commit comments

Comments
 (0)