Skip to content

Barrier Function improvement #3

@LockedFlysher

Description

@LockedFlysher
def penalty(constraint, alpha=0.1, sigma=5, transition_width=0.2):
    """
    Penalty function using tanh for smooth transition

    Parameters:
    - constraint: constraint value g
    - alpha: penalty parameter
    - sigma: switching point
    - transition_width: transition width, smaller values create steeper transitions
    """

    def safe_log(x):
        x = jnp.clip(x, 1e-10, 1e6)
        return jnp.log(x)

    # Function values for the two branches
    quadratic_barrier = alpha / 2 * (jnp.square((constraint - 2 * sigma) / sigma) - jnp.ones_like(constraint))
    log_barrier = -alpha * safe_log(constraint)
    combined_barrier = quadratic_barrier + log_barrier  # Left-side combination

    # Smooth transition weight (between 0 and 1)
    # When g << σ, weight ≈ 0 (use combined_barrier)
    # When g >> σ, weight ≈ 1 (use log_barrier)
    weight = 0.5 * (1 + jnp.tanh((constraint - sigma) / transition_width))

    # Smooth interpolation
    smooth_result = weight * log_barrier + (1 - weight) * combined_barrier

    return jnp.clip(smooth_result, 0, 1e8)

Metadata

Metadata

Assignees

No one assigned

    Labels

    enhancementNew feature or request

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions