|
23 | 23 | @brief Solves \f$ Ax = b \f$ using LU factorization for general matrices
|
24 | 24 | @{
|
25 | 25 | @defgroup plasma_gesv gesv: Solves Ax = b using LU factorization (driver)
|
| 26 | + @defgroup plasma_geinv geinv: LU inverse |
26 | 27 | @defgroup plasma_getrf getrf: LU factorization
|
27 | 28 | @defgroup plasma_getrs getrs: LU forward and back solves
|
28 |
| - @defgroup plasma_getri getri: LU inverse |
| 29 | + @defgroup plasma_getri getri: LU inverse using factorization |
29 | 30 | @defgroup plasma_gerfs gerfs: Refine solution
|
30 | 31 | @defgroup group_gesv_aux Auxiliary routines
|
31 | 32 | @{
|
|
34 | 35 | @}
|
35 | 36 | @}
|
36 | 37 |
|
| 38 | + @defgroup group_gesv General band matrices: LU |
| 39 | + @brief Solves \f$ Ax = b \f$ using LU factorization for general band matrices |
| 40 | + @{ |
| 41 | + @defgroup plasma_gbsv gbsv: Solves Ax = b using LU factorization (driver) |
| 42 | + @defgroup plasma_gbtrf gbtrf: LU factorization |
| 43 | + @defgroup plasma_gbtrs gbtrs: LU forward and back solves |
| 44 | + @} |
| 45 | + |
37 | 46 | @defgroup group_gels General matrices: least squares
|
38 | 47 | @brief Solves \f$ Ax \approx b \f$ where \f$ A \f$ is rectangular
|
39 | 48 | @see group_orthogonal
|
|
47 | 56 | @brief Solves \f$ Ax = b \f$ using Cholesky factorization for SPD/HPD matrices
|
48 | 57 | @{
|
49 | 58 | @defgroup plasma_posv posv: Solves Ax = b using Cholesky factorization (driver)
|
| 59 | + @defgroup plasma_poinv poinv: Cholesky inverse |
50 | 60 | @defgroup plasma_potrf potrf: Cholesky factorization
|
51 | 61 | @defgroup plasma_potrs potrs: Cholesky forward and back solves
|
52 |
| - @defgroup plasma_potri potri: Cholesky inverse |
| 62 | + @defgroup plasma_potri potri: Cholesky inverse using factorization |
53 | 63 | @defgroup plasma_porfs porfs: Refine solution
|
54 | 64 | @defgroup group_posv_aux Auxiliary routines
|
55 | 65 | @{
|
56 | 66 | @defgroup plasma_potf2 potf2: Cholesky panel factorization
|
57 | 67 | @defgroup plasma_lauum lauum: Multiplies triangular matrices; used in potri
|
| 68 | + @defgroup core_lauum core_lauum |
58 | 69 | @}
|
59 | 70 | @}
|
60 | 71 |
|
| 72 | + @defgroup group_pbsv Symmetric/Hermitian positive definite band: Cholesky |
| 73 | + @brief Solves \f$ Ax = b \f$ using Cholesky factorization for SPD/HPD matrices |
| 74 | + @{ |
| 75 | + @defgroup plasma_pbsv pbsv: Solves Ax = b using Cholesky factorization (driver) |
| 76 | + @defgroup plasma_pbtrf pbtrf: Cholesky factorization |
| 77 | + @defgroup plasma_pbtrs pbtrs: Cholesky forward and back solves |
| 78 | + @} |
| 79 | + |
61 | 80 | @defgroup group_hesv Symmetric/Hermitian indefinite
|
62 | 81 | @brief Solves \f$ Ax = b \f$ using indefinite factorization for symmetric/Hermitian matrices
|
63 | 82 | @{
|
|
133 | 152 | @defgroup plasma_heev sy/heev: Solves using QR iteration (driver)
|
134 | 153 | @defgroup plasma_heevd sy/heevd: Solves using divide-and-conquer (driver)
|
135 | 154 | @defgroup plasma_heevr sy/heevr: Solves using MRRR (driver)
|
| 155 | + @defgroup plasma_stevx stevx: Solves tridiagonal using bisection |
| 156 | + @defgroup plasma_stevx2 stevx2: Solves tridiagonal using bisection |
136 | 157 |
|
137 | 158 | @defgroup plasma_hetrd sy/hetrd: Tridiagonal reduction
|
138 | 159 | @defgroup plasma_unmtr or/unmtr: Multiplies by Q from tridiagonal reduction
|
139 | 160 | @defgroup plasma_ungtr or/ungtr: Generates Q from tridiagonal reduction
|
140 | 161 | @defgroup group_heev_aux Auxiliary routines
|
141 | 162 | @{
|
| 163 | + @defgroup plasma_laebz laebz: Subdivides bracket in bisection. |
142 | 164 | @}
|
143 | 165 | @}
|
144 | 166 |
|
|
247 | 269 | @defgroup plasma_syr2 syr2: Symmetric rank 2 update
|
248 | 270 | @brief \f$ A = \alpha xy^T + \alpha yx^T + A \f$
|
249 | 271 |
|
| 272 | + @defgroup plasma_tradd tradd: Add triangular matrices |
| 273 | + @brief \f$ B = \alpha A + \beta B \f$ |
| 274 | + |
250 | 275 | @defgroup plasma_trmv trmv: Triangular matrix-vector multiply
|
251 | 276 | @brief \f$ x = Ax \f$
|
252 | 277 |
|
|
275 | 300 | @defgroup plasma_gemm gemm: General matrix multiply: C = AB + C
|
276 | 301 | @brief \f$ C = \alpha \;op(A) \;op(B) + \beta C \f$
|
277 | 302 |
|
| 303 | + @defgroup plasma_gbmm gbmm: General band matrix multiply: C = AB + C |
| 304 | + @brief \f$ C = \alpha \;op(A) \;op(B) + \beta C \f$ |
| 305 | + |
278 | 306 | @defgroup plasma_hemm hemm: Hermitian matrix multiply
|
279 | 307 | @brief \f$ C = \alpha A B + \beta C \f$
|
280 | 308 | or \f$ C = \alpha B A + \beta C \f$ where \f$ A \f$ is Hermitian
|
|
323 | 351 |
|
324 | 352 | @defgroup group_norms Matrix norms
|
325 | 353 | @{
|
326 |
| - @defgroup plasma_lange lange: General matrix norm |
| 354 | + @defgroup plasma_lange lange: General matrix norm |
327 | 355 | @brief 1, Frobenius, or Infinity norm; or largest element
|
328 | 356 |
|
329 |
| - @defgroup plasma_lanhe lansy/he: Symmetric/Hermitian matrix norm |
| 357 | + @defgroup plasma_langb langb: General band matrix norm |
330 | 358 | @brief 1, Frobenius, or Infinity norm; or largest element
|
331 | 359 |
|
332 |
| - @defgroup plasma_lantr lantr: Triangular matrix norm |
| 360 | + @defgroup plasma_lanhe lanhe: Hermitian matrix norm |
| 361 | + @brief 1, Frobenius, or Infinity norm; or largest element |
| 362 | + |
| 363 | + @defgroup plasma_lansy lansy: Symmetric matrix norm |
| 364 | + @brief 1, Frobenius, or Infinity norm; or largest element |
| 365 | + |
| 366 | + @defgroup plasma_lantr lantr: Triangular matrix norm |
333 | 367 | @brief 1, Frobenius, or Infinity norm; or largest element
|
334 | 368 | @}
|
335 | 369 | @}
|
|
415 | 449 | @defgroup core_syr2 syr2: Symmetric rank 2 update
|
416 | 450 | @brief \f$ A = \alpha xy^T + \alpha yx^T + A \f$
|
417 | 451 |
|
| 452 | + @defgroup core_tradd tradd: Add triangular matrices |
| 453 | + @brief \f$ B = \alpha A + \beta B \f$ |
| 454 | + |
418 | 455 | @defgroup core_trmv trmv: Triangular matrix-vector multiply
|
419 | 456 | @brief \f$ x = Ax \f$
|
420 | 457 |
|
|
433 | 470 | @defgroup core_laset laset: Set matrix to constants
|
434 | 471 | @brief \f$ A_{ij} = \f$ diag if \f$ i=j \f$;
|
435 | 472 | \f$ A_{ij} = \f$ offdiag otherwise.
|
| 473 | + |
| 474 | + @defgroup core_laswp laswp: Swap rows of general matrix |
| 475 | + @brief \f$ A = P A \f$ |
| 476 | + |
| 477 | + @defgroup core_heswp heswp: Swap rows of Hermitian matrix |
| 478 | + @brief \f$ A = P A P^T \f$ |
436 | 479 | @}
|
437 | 480 |
|
438 | 481 | @defgroup core_blas3 Level 3: matrix-matrix operations, O(n^3) work
|
|
506 | 549 |
|
507 | 550 | @defgroup core_solvers Linear system solvers
|
508 | 551 | @{
|
509 |
| - @defgroup core_potrf potrf: Cholesky factorization |
| 552 | + @defgroup core_potrf potrf: Cholesky factorization of a tile |
| 553 | + @} |
| 554 | + |
| 555 | + @defgroup core_orthogonal Orthogonal/unitary factorizations |
| 556 | + @{ |
510 | 557 | @defgroup core_geqrt geqrt: QR factorization of a tile
|
511 |
| - @defgroup core_tsqrt tsqrt: QR factorization of a rectangular matrix of two tiles |
512 |
| - @defgroup core_unmqr unmqr: Apply Householder reflectors from QR to a tile |
513 |
| - @defgroup core_tsmqr tsmqr: Apply Householder reflectors from QR to a rectangular matrix of two tiles |
514 | 558 | @defgroup core_gelqt gelqt: LQ factorization of a tile
|
515 |
| - @defgroup core_tslqt tslqt: LQ factorization of a rectangular matrix of two tiles |
| 559 | + |
| 560 | + @defgroup core_unmqr unmqr: Apply Householder reflectors from QR to a tile |
516 | 561 | @defgroup core_unmlq unmlq: Apply Householder reflectors from LQ to a tile
|
517 |
| - @defgroup core_tsmlq tsmlq: Apply Householder reflectors from LQ to a rectangular matrix of two tiles |
518 |
| - @defgroup core_pamm pamm: Updating a matrix using two tiles |
519 |
| - @defgroup core_parfb parfb: Apply Householder reflectors to a rectangular matrix of two tiles |
| 562 | + |
| 563 | + @defgroup core_tsqrt tsqrt: QR factorization of triangle-square tiles |
| 564 | + @defgroup core_tslqt tslqt: LQ factorization of triangle-square tiles |
| 565 | + |
| 566 | + @defgroup core_tsmqr tsmqr: Apply Householder reflectors from QR of triangle-square tiles |
| 567 | + @defgroup core_tsmlq tsmlq: Apply Householder reflectors from LQ of triangle-square tiles |
| 568 | + |
| 569 | + @defgroup core_ttqrt ttqrt: QR factorization of triangle-triangle tiles |
| 570 | + @defgroup core_ttlqt ttlqt: LQ factorization of triangle-triangle tiles |
| 571 | + |
| 572 | + @defgroup core_ttmqr ttmqr: Apply Householder reflectors from QR of triangle-triangle tiles |
| 573 | + @defgroup core_ttmlq ttmlq: Apply Householder reflectors from LQ of triangle-triangle tiles |
| 574 | + |
| 575 | + @defgroup core_parfb parfb: Apply Householder reflectors to two tiles |
| 576 | + @defgroup core_pamm pamm: pentagonal matrix-matrix multiply |
| 577 | + @defgroup core_pemv pemv: pentagonal matrix-vector multiply |
| 578 | + @} |
| 579 | + |
| 580 | + @defgroup core_eig Eigenvalue routines |
| 581 | + @{ |
| 582 | + @defgroup core_hegst hegst: Hermitian generalized to standard problem |
| 583 | + @} |
| 584 | + |
| 585 | + @defgroup core_svd SVD routines |
| 586 | + @{ |
| 587 | + @defgroup core_tbbrd_type1 tbbrd_type1: bulge-chasing, first diag tile |
| 588 | + @defgroup core_tbbrd_type2 tbbrd_type2: bulge-chasing, off-diag tile |
| 589 | + @defgroup core_tbbrd_type3 tbbrd_type3: bulge-chasing, diag tiles |
520 | 590 | @}
|
521 | 591 | @}
|
522 | 592 |
|
|
0 commit comments