diff --git a/utils.py b/utils.py index 8d8e5ba3..c63bae62 100644 --- a/utils.py +++ b/utils.py @@ -16,7 +16,7 @@ import tensorflow.contrib.slim as slim def load_mnist(dataset_name): - data_dir = os.path.join("./data", dataset_name) + data_dir = os.path.join("data", dataset_name) def extract_data(filename, num_data, head_size, data_size): with gzip.open(filename) as bytestream: @@ -25,16 +25,16 @@ def extract_data(filename, num_data, head_size, data_size): data = np.frombuffer(buf, dtype=np.uint8).astype(np.float) return data - data = extract_data(data_dir + '/train-images-idx3-ubyte.gz', 60000, 16, 28 * 28) + data = extract_data(os.path.join(data_dir, 'train-images-idx3-ubyte.gz'), 60000, 16, 28 * 28) trX = data.reshape((60000, 28, 28, 1)) - data = extract_data(data_dir + '/train-labels-idx1-ubyte.gz', 60000, 8, 1) + data = extract_data(os.path.join(data_dir, 'train-labels-idx1-ubyte.gz'), 60000, 8, 1) trY = data.reshape((60000)) - data = extract_data(data_dir + '/t10k-images-idx3-ubyte.gz', 10000, 16, 28 * 28) + data = extract_data(os.path.join(data_dir, 't10k-images-idx3-ubyte.gz'), 10000, 16, 28 * 28) teX = data.reshape((10000, 28, 28, 1)) - data = extract_data(data_dir + '/t10k-labels-idx1-ubyte.gz', 10000, 8, 1) + data = extract_data(os.path.join(data_dir, 't10k-labels-idx1-ubyte.gz'), 10000, 8, 1) teY = data.reshape((10000)) trY = np.asarray(trY) @@ -146,4 +146,4 @@ def discrete_cmap(N, base_cmap=None): base = plt.cm.get_cmap(base_cmap) color_list = base(np.linspace(0, 1, N)) cmap_name = base.name + str(N) - return base.from_list(cmap_name, color_list, N) \ No newline at end of file + return base.from_list(cmap_name, color_list, N)