Skip to content

Commit 052037c

Browse files
docs: remove revisions
1 parent 1e076c7 commit 052037c

File tree

2 files changed

+12
-16
lines changed

2 files changed

+12
-16
lines changed

README.md

Lines changed: 10 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -92,16 +92,16 @@ Text Embeddings Inference currently supports CamemBERT, and XLM-RoBERTa Sequence
9292

9393
Below are some examples of the currently supported models:
9494

95-
| Task | Model Type | Model ID | Revision |
96-
|--------------------|-------------|---------------------------------------------------------------------------------------------|-------------|
97-
| Re-Ranking | XLM-RoBERTa | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | `refs/pr/4` |
98-
| Re-Ranking | XLM-RoBERTa | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | `refs/pr/5` |
99-
| Sentiment Analysis | RoBERTa | [SamLowe/roberta-base-go_emotions](https://huggingface.co/SamLowe/roberta-base-go_emotions) | |
95+
| Task | Model Type | Model ID |
96+
|--------------------|-------------|---------------------------------------------------------------------------------------------|
97+
| Re-Ranking | XLM-RoBERTa | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) |
98+
| Re-Ranking | XLM-RoBERTa | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) |
99+
| Sentiment Analysis | RoBERTa | [SamLowe/roberta-base-go_emotions](https://huggingface.co/SamLowe/roberta-base-go_emotions) |
100100

101101
### Docker
102102

103103
```shell
104-
model=Alibaba-NLP/gte-base-en-v1.5
104+
model=BAAI/bge-large-en-v1.5
105105
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
106106

107107
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.4 --model-id $model
@@ -382,10 +382,9 @@ downstream performance.
382382

383383
```shell
384384
model=BAAI/bge-reranker-large
385-
revision=refs/pr/4
386385
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
387386

388-
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.4 --model-id $model --revision $revision
387+
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.4 --model-id $model
389388
```
390389

391390
And then you can rank the similarity between a query and a list of texts with:
@@ -451,7 +450,7 @@ found [here](https://github.com/huggingface/text-embeddings-inference/blob/main/
451450
You can use the gRPC API by adding the `-grpc` tag to any TEI Docker image. For example:
452451

453452
```shell
454-
model=Alibaba-NLP/gte-base-en-v1.5
453+
model=BAAI/bge-large-en-v1.5
455454
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
456455

457456
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.4-grpc --model-id $model
@@ -485,7 +484,7 @@ cargo install --path router -F metal
485484
You can now launch Text Embeddings Inference on CPU with:
486485

487486
```shell
488-
model=Alibaba-NLP/gte-base-en-v1.5
487+
model=BAAI/bge-large-en-v1.5
489488

490489
text-embeddings-router --model-id $model --port 8080
491490
```
@@ -523,7 +522,7 @@ cargo install --path router -F candle-cuda -F http --no-default-features
523522
You can now launch Text Embeddings Inference on GPU with:
524523

525524
```shell
526-
model=Alibaba-NLP/gte-base-en-v1.5
525+
model=BAAI/bge-large-en-v1.5
527526

528527
text-embeddings-router --model-id $model --port 8080
529528
```

docs/source/en/quick_tour.md

Lines changed: 2 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -31,15 +31,13 @@ Finally, deploy your model. Let's say you want to use `BAAI/bge-large-en-v1.5`.
3131

3232
```shell
3333
model=BAAI/bge-large-en-v1.5
34-
revision=refs/pr/5
3534
volume=$PWD/data
3635

37-
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.4 --model-id $model --revision $revision
36+
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.4 --model-id $model
3837
```
3938

4039
<Tip>
4140

42-
Here we pass a `revision=refs/pr/5` because the `safetensors` variant of this model is currently in a pull request.
4341
We also recommend sharing a volume with the Docker container (`volume=$PWD/data`) to avoid downloading weights every run.
4442

4543
</Tip>
@@ -66,10 +64,9 @@ Let's say you want to use `BAAI/bge-reranker-large`:
6664

6765
```shell
6866
model=BAAI/bge-reranker-large
69-
revision=refs/pr/4
7067
volume=$PWD/data
7168

72-
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.4 --model-id $model --revision $revision
69+
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.4 --model-id $model
7370
```
7471

7572
Once you have deployed a model, you can use the `rerank` endpoint to rank the similarity between a query and a list

0 commit comments

Comments
 (0)