Skip to content

Commit d97510f

Browse files
committed
Add new results csv and update README with 3 new ResNet weight results
1 parent 3d9be78 commit d97510f

File tree

3 files changed

+93
-6
lines changed

3 files changed

+93
-6
lines changed

README.md

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -18,8 +18,9 @@ The work of many others is present here. I've tried to make sure all source mate
1818

1919
I've included a few of my favourite models, but this is not an exhaustive collection. You can't do better than Cadene's collection in that regard. Most models do have pretrained weights from their respective sources or original authors.
2020

21-
* ResNet/ResNeXt (from [torchvision](https://github.com/pytorch/vision/tree/master/torchvision/models) with ResNeXt mods by myself)
21+
* ResNet/ResNeXt (from [torchvision](https://github.com/pytorch/vision/tree/master/torchvision/models) with mods by myself)
2222
* ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152, ResNeXt50 (32x4d), ResNeXt101 (32x4d and 64x4d)
23+
* 'Bag of Tricks' / Gluon C, D, E, S variations (https://arxiv.org/abs/1812.01187)
2324
* Instagram trained / ImageNet tuned ResNeXt101-32x8d to 32x48d from from [facebookresearch](https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/)
2425
* DenseNet (from [torchvision](https://github.com/pytorch/vision/tree/master/torchvision/models))
2526
* DenseNet-121, DenseNet-169, DenseNet-201, DenseNet-161
@@ -70,12 +71,15 @@ I've leveraged the training scripts in this repository to train a few of the mod
7071
#### @ 224x224
7172
|Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling |
7273
|---|---|---|---|---|
74+
| resnext50d_32x4d | 79.674 (20.326) | 94.868 (5.132) | 25.1M | bicubic |
7375
| resnext50_32x4d | 78.512 (21.488) | 94.042 (5.958) | 25M | bicubic |
7476
| resnet50 | 78.470 (21.530) | 94.266 (5.734) | 25.6M | bicubic |
7577
| seresnext26_32x4d | 77.104 (22.896) | 93.316 (6.684) | 16.8M | bicubic |
7678
| efficientnet_b0 | 76.912 (23.088) | 93.210 (6.790) | 5.29M | bicubic |
79+
| resnet26d | 76.68 (23.32) | 93.166 (6.834) | 16M | bicubic |
7780
| mobilenetv3_100 | 75.634 (24.366) | 92.708 (7.292) | 5.5M | bicubic |
7881
| mnasnet_a1 | 75.448 (24.552) | 92.604 (7.396) | 3.89M | bicubic |
82+
| resnet26 | 75.292 (24.708) | 92.57 (7.43) | 16M | bicubic |
7983
| fbnetc_100 | 75.124 (24.876) | 92.386 (7.614) | 5.6M | bilinear |
8084
| resnet34 | 75.110 (24.890) | 92.284 (7.716) | 22M | bilinear |
8185
| seresnet34 | 74.808 (25.192) | 92.124 (7.876) | 22M | bilinear |
@@ -120,8 +124,6 @@ I've leveraged the training scripts in this repository to train a few of the mod
120124
| tf_efficientnet_b0 *tfp | 76.828 (23.172) | 93.226 (6.774) | 5.29 | bicubic | [Google](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
121125
| tf_efficientnet_b0 | 76.528 (23.472) | 93.010 (6.990) | 5.29 | bicubic | [Google](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
122126
| gluon_resnet34_v1b | 74.580 (25.420) | 91.988 (8.012) | 21.80 | bicubic | |
123-
| tflite_semnasnet_100 | 73.086 (26.914) | 91.336 (8.664) | 3.87 | bicubic | [Google TFLite](https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet) |
124-
| tflite_mnasnet_100 | 72.398 (27.602) | 90.930 (9.070) | 4.36 | bicubic | [Google TFLite](https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet)
125127
| gluon_resnet18_v1b | 70.830 (29.170) | 89.756 (10.244) | 11.69 | bicubic | |
126128

127129
#### @ 240x240

results/results-all.csv

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,8 +2,6 @@ model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation
22
resnet18,69.758,30.242,89.078,10.922,11.69,224,0.875,bilinear
33
gluon_resnet18_v1b,70.83,29.17,89.756,10.244,11.69,224,0.875,bicubic
44
seresnet18,71.758,28.242,90.334,9.666,11.78,224,0.875,bicubic
5-
tflite_mnasnet_100,72.4,27.6,90.936,9.064,4.36,224,0.875,bicubic
6-
tflite_semnasnet_100,73.078,26.922,91.334,8.666,3.87,224,0.875,bicubic
75
tv_resnet34,73.314,26.686,91.42,8.58,21.8,224,0.875,bilinear
86
spnasnet_100,74.08,25.92,91.832,8.168,4.42,224,0.875,bilinear
97
gluon_resnet34_v1b,74.58,25.42,91.988,8.012,21.8,224,0.875,bicubic
@@ -12,12 +10,14 @@ densenet121,74.752,25.248,92.152,7.848,7.98,224,0.875,bicubic
1210
seresnet34,74.808,25.192,92.126,7.874,21.96,224,0.875,bilinear
1311
resnet34,75.112,24.888,92.288,7.712,21.8,224,0.875,bilinear
1412
fbnetc_100,75.12,24.88,92.386,7.614,5.57,224,0.875,bilinear
13+
resnet26,75.292,24.708,92.57,7.43,16,224,0.875,bicubic
1514
semnasnet_100,75.456,24.544,92.592,7.408,3.89,224,0.875,bicubic
1615
mobilenetv3_100,75.628,24.372,92.708,7.292,5.48,224,0.875,bicubic
1716
densenet169,75.912,24.088,93.024,6.976,14.15,224,0.875,bicubic
1817
tv_resnet50,76.13,23.87,92.862,7.138,25.56,224,0.875,bilinear
1918
dpn68,76.306,23.694,92.97,7.03,12.61,224,0.875,bicubic
2019
tf_efficientnet_b0,76.528,23.472,93.01,6.99,5.29,224,0.875,bicubic
20+
resnet26d,76.68,23.32,93.166,6.834,16.01,224,0.875,bicubic
2121
efficientnet_b0,76.914,23.086,93.206,6.794,5.29,224,0.875,bicubic
2222
seresnext26_32x4d,77.1,22.9,93.31,6.69,16.79,224,0.875,bicubic
2323
densenet201,77.29,22.71,93.478,6.522,20.01,224,0.875,bicubic
@@ -30,7 +30,7 @@ gluon_resnet50_v1b,77.578,22.422,93.718,6.282,25.56,224,0.875,bicubic
3030
tv_resnext50_32x4d,77.618,22.382,93.698,6.302,25.03,224,0.875,bilinear
3131
seresnet50,77.636,22.364,93.752,6.248,28.09,224,0.875,bilinear
3232
tf_inception_v3,77.856,22.144,93.644,6.356,23.83,299,0.875,bicubic
33-
gluon_resnet50_v1c,78.01,21.99,93.988,6.012,25.58,224,0.875,bicubic
33+
gluon_resnet50_v1c,78.012,21.988,93.988,6.012,25.58,224,0.875,bicubic
3434
resnet152,78.312,21.688,94.046,5.954,60.19,224,0.875,bilinear
3535
seresnet101,78.396,21.604,94.258,5.742,49.33,224,0.875,bilinear
3636
wide_resnet50_2,78.468,21.532,94.086,5.914,68.88,224,0.875,bilinear
@@ -51,6 +51,7 @@ gluon_resnext50_32x4d,79.356,20.644,94.424,5.576,25.03,224,0.875,bicubic
5151
gluon_resnet101_v1c,79.544,20.456,94.586,5.414,44.57,224,0.875,bicubic
5252
tf_efficientnet_b2,79.606,20.394,94.712,5.288,9.11,260,0.89,bicubic
5353
dpn98,79.636,20.364,94.594,5.406,61.57,224,0.875,bicubic
54+
resnext50d_32x4d,79.674,20.326,94.868,5.132,25.05,224,0.875,bicubic
5455
gluon_resnet152_v1b,79.692,20.308,94.738,5.262,60.19,224,0.875,bicubic
5556
efficientnet_b2,79.752,20.248,94.71,5.29,9.11,260,0.89,bicubic
5657
dpn131,79.828,20.172,94.704,5.296,79.25,224,0.875,bicubic
Lines changed: 84 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,84 @@
1+
model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation
2+
resnet18,57.18,42.82,80.19,19.81,11.69,224,0.875,bilinear
3+
gluon_resnet18_v1b,58.32,41.68,80.96,19.04,11.69,224,0.875,bicubic
4+
seresnet18,59.81,40.19,81.68,18.32,11.78,224,0.875,bicubic
5+
tv_resnet34,61.2,38.8,82.72,17.28,21.8,224,0.875,bilinear
6+
spnasnet_100,61.21,38.79,82.77,17.23,4.42,224,0.875,bilinear
7+
mnasnet_100,61.91,38.09,83.71,16.29,4.38,224,0.875,bicubic
8+
fbnetc_100,62.43,37.57,83.39,16.61,5.57,224,0.875,bilinear
9+
gluon_resnet34_v1b,62.56,37.44,84,16,21.8,224,0.875,bicubic
10+
resnet34,62.82,37.18,84.12,15.88,21.8,224,0.875,bilinear
11+
seresnet34,62.89,37.11,84.22,15.78,21.96,224,0.875,bilinear
12+
densenet121,62.94,37.06,84.26,15.74,7.98,224,0.875,bicubic
13+
semnasnet_100,63.12,36.88,84.53,15.47,3.89,224,0.875,bicubic
14+
mobilenetv3_100,63.23,36.77,84.52,15.48,5.48,224,0.875,bicubic
15+
tv_resnet50,63.33,36.67,84.65,15.35,25.56,224,0.875,bilinear
16+
resnet26,63.45,36.55,84.27,15.73,16,224,0.875,bicubic
17+
tf_efficientnet_b0,63.53,36.47,84.88,15.12,5.29,224,0.875,bicubic
18+
dpn68,64.22,35.78,85.18,14.82,12.61,224,0.875,bicubic
19+
efficientnet_b0,64.58,35.42,85.89,14.11,5.29,224,0.875,bicubic
20+
resnet26d,64.63,35.37,85.12,14.88,16.01,224,0.875,bicubic
21+
densenet169,64.78,35.22,85.25,14.75,14.15,224,0.875,bicubic
22+
seresnext26_32x4d,65.04,34.96,85.65,14.35,16.79,224,0.875,bicubic
23+
densenet201,65.28,34.72,85.67,14.33,20.01,224,0.875,bicubic
24+
dpn68b,65.6,34.4,85.94,14.06,12.61,224,0.875,bicubic
25+
resnet101,65.68,34.32,85.98,14.02,44.55,224,0.875,bilinear
26+
densenet161,65.85,34.15,86.46,13.54,28.68,224,0.875,bicubic
27+
gluon_resnet50_v1b,66.04,33.96,86.27,13.73,25.56,224,0.875,bicubic
28+
inception_v3,66.12,33.88,86.34,13.66,27.16,299,0.875,bicubic
29+
tv_resnext50_32x4d,66.18,33.82,86.04,13.96,25.03,224,0.875,bilinear
30+
seresnet50,66.24,33.76,86.33,13.67,28.09,224,0.875,bilinear
31+
tf_inception_v3,66.41,33.59,86.68,13.32,23.83,299,0.875,bicubic
32+
tf_efficientnet_b1,66.52,33.48,86.68,13.32,7.79,240,0.882,bicubic
33+
gluon_resnet50_v1c,66.54,33.46,86.16,13.84,25.58,224,0.875,bicubic
34+
adv_inception_v3,66.6,33.4,86.56,13.44,23.83,299,0.875,bicubic
35+
wide_resnet50_2,66.65,33.35,86.81,13.19,68.88,224,0.875,bilinear
36+
wide_resnet101_2,66.68,33.32,87.04,12.96,126.89,224,0.875,bilinear
37+
resnet50,66.81,33.19,87,13,25.56,224,0.875,bicubic
38+
resnext50_32x4d,66.88,33.12,86.36,13.64,25.03,224,0.875,bicubic
39+
resnet152,67.02,32.98,87.57,12.43,60.19,224,0.875,bilinear
40+
gluon_resnet50_v1s,67.1,32.9,86.86,13.14,25.68,224,0.875,bicubic
41+
seresnet101,67.15,32.85,87.05,12.95,49.33,224,0.875,bilinear
42+
tf_efficientnet_b2,67.4,32.6,87.58,12.42,9.11,260,0.89,bicubic
43+
gluon_resnet101_v1b,67.45,32.55,87.23,12.77,44.55,224,0.875,bicubic
44+
efficientnet_b1,67.55,32.45,87.29,12.71,7.79,240,0.882,bicubic
45+
seresnet152,67.55,32.45,87.39,12.61,66.82,224,0.875,bilinear
46+
gluon_resnet101_v1c,67.56,32.44,87.16,12.84,44.57,224,0.875,bicubic
47+
gluon_inception_v3,67.59,32.41,87.46,12.54,23.83,299,0.875,bicubic
48+
xception,67.67,32.33,87.57,12.43,22.86,299,0.8975,bicubic
49+
efficientnet_b2,67.8,32.2,88.2,11.8,9.11,260,0.89,bicubic
50+
resnext101_32x8d,67.85,32.15,87.48,12.52,88.79,224,0.875,bilinear
51+
seresnext50_32x4d,67.87,32.13,87.62,12.38,27.56,224,0.875,bilinear
52+
gluon_resnet50_v1d,67.91,32.09,87.12,12.88,25.58,224,0.875,bicubic
53+
dpn92,68.01,31.99,87.59,12.41,37.67,224,0.875,bicubic
54+
gluon_resnext50_32x4d,68.28,31.72,87.32,12.68,25.03,224,0.875,bicubic
55+
tf_efficientnet_b3,68.52,31.48,88.7,11.3,12.23,300,0.904,bicubic
56+
dpn98,68.58,31.42,87.66,12.34,61.57,224,0.875,bicubic
57+
gluon_seresnext50_32x4d,68.67,31.33,88.32,11.68,27.56,224,0.875,bicubic
58+
dpn107,68.71,31.29,88.13,11.87,86.92,224,0.875,bicubic
59+
gluon_resnet101_v1s,68.72,31.28,87.9,12.1,44.67,224,0.875,bicubic
60+
resnext50d_32x4d,68.75,31.25,88.31,11.69,25.05,224,0.875,bicubic
61+
dpn131,68.76,31.24,87.48,12.52,79.25,224,0.875,bicubic
62+
gluon_resnet152_v1b,68.81,31.19,87.71,12.29,60.19,224,0.875,bicubic
63+
gluon_resnext101_32x4d,68.96,31.04,88.34,11.66,44.18,224,0.875,bicubic
64+
gluon_resnet101_v1d,68.99,31.01,88.08,11.92,44.57,224,0.875,bicubic
65+
gluon_resnet152_v1c,69.13,30.87,87.89,12.11,60.21,224,0.875,bicubic
66+
seresnext101_32x4d,69.34,30.66,88.05,11.95,48.96,224,0.875,bilinear
67+
inception_v4,69.35,30.65,88.78,11.22,42.68,299,0.875,bicubic
68+
ens_adv_inception_resnet_v2,69.52,30.48,88.5,11.5,55.84,299,0.8975,bicubic
69+
gluon_resnext101_64x4d,69.69,30.31,88.26,11.74,83.46,224,0.875,bicubic
70+
gluon_resnet152_v1d,69.95,30.05,88.47,11.53,60.21,224,0.875,bicubic
71+
gluon_seresnext101_32x4d,70.01,29.99,88.91,11.09,48.96,224,0.875,bicubic
72+
inception_resnet_v2,70.12,29.88,88.68,11.32,55.84,299,0.8975,bicubic
73+
gluon_resnet152_v1s,70.32,29.68,88.87,11.13,60.32,224,0.875,bicubic
74+
gluon_seresnext101_64x4d,70.44,29.56,89.35,10.65,88.23,224,0.875,bicubic
75+
senet154,70.48,29.52,88.99,11.01,115.09,224,0.875,bilinear
76+
gluon_senet154,70.6,29.4,88.92,11.08,115.09,224,0.875,bicubic
77+
tf_efficientnet_b4,71.34,28.66,90.11,9.89,19.34,380,0.922,bicubic
78+
nasnetalarge,72.31,27.69,90.51,9.49,88.75,331,0.875,bicubic
79+
pnasnet5large,72.37,27.63,90.26,9.74,86.06,331,0.875,bicubic
80+
tf_efficientnet_b5,72.56,27.44,91.1,8.9,30.39,456,0.934,bicubic
81+
ig_resnext101_32x8d,73.66,26.34,92.15,7.85,88.79,224,0.875,bilinear
82+
ig_resnext101_32x16d,75.71,24.29,92.9,7.1,194.03,224,0.875,bilinear
83+
ig_resnext101_32x32d,76.84,23.16,93.19,6.81,468.53,224,0.875,bilinear
84+
ig_resnext101_32x48d,76.87,23.13,93.32,6.68,828.41,224,0.875,bilinear

0 commit comments

Comments
 (0)