@@ -947,31 +947,56 @@ def _cfg(url='', **kwargs):
947
947
input_size = (3 , 288 , 288 ), pool_size = (9 , 9 ), crop_pct = 1.0 ,
948
948
),
949
949
'efficientvit_l1.r224_in1k' : _cfg (
950
- # hf_hub_id='timm/',
950
+ hf_hub_id = 'timm/' ,
951
+ crop_pct = 1.0 ,
951
952
),
952
953
'efficientvit_l2.r224_in1k' : _cfg (
953
- # hf_hub_id='timm/',
954
+ hf_hub_id = 'timm/' ,
955
+ crop_pct = 1.0 ,
956
+ ),
957
+ 'efficientvit_l2.r256_in1k' : _cfg (
958
+ hf_hub_id = 'timm/' ,
959
+ input_size = (3 , 256 , 256 ), pool_size = (8 , 8 ), crop_pct = 1.0 ,
960
+ ),
961
+ 'efficientvit_l2.r288_in1k' : _cfg (
962
+ hf_hub_id = 'timm/' ,
963
+ input_size = (3 , 288 , 288 ), pool_size = (9 , 9 ), crop_pct = 1.0 ,
954
964
),
955
965
'efficientvit_l2.r384_in1k' : _cfg (
956
- # hf_hub_id='timm/',
966
+ hf_hub_id = 'timm/' ,
957
967
input_size = (3 , 384 , 384 ), pool_size = (12 , 12 ), crop_pct = 1.0 ,
958
968
),
959
969
'efficientvit_l3.r224_in1k' : _cfg (
960
- # hf_hub_id='timm/',
961
- ),
962
- 'efficientvit_l3.r384_in1k' : _cfg (
963
- # hf_hub_id='timm/',
964
- input_size = (3 , 384 , 384 ), pool_size = (12 , 12 ), crop_pct = 1.0 ,
970
+ hf_hub_id = 'timm/' ,
971
+ crop_pct = 1.0 ,
965
972
),
966
- 'efficientvit_l0_sam.sam' : _cfg (
967
- # hf_hub_id='timm/',
973
+ 'efficientvit_l3.r256_in1k' : _cfg (
974
+ hf_hub_id = 'timm/' ,
975
+ input_size = (3 , 256 , 256 ), pool_size = (8 , 8 ), crop_pct = 1.0 ,
968
976
),
969
- 'efficientvit_l1_sam.sam' : _cfg (
970
- # hf_hub_id='timm/',
977
+ 'efficientvit_l3.r320_in1k' : _cfg (
978
+ hf_hub_id = 'timm/' ,
979
+ input_size = (3 , 320 , 320 ), pool_size = (10 , 10 ), crop_pct = 1.0 ,
971
980
),
972
- 'efficientvit_l2_sam.sam' : _cfg (
973
- # hf_hub_id='timm/',
981
+ 'efficientvit_l3.r384_in1k' : _cfg (
982
+ hf_hub_id = 'timm/' ,
983
+ input_size = (3 , 384 , 384 ), pool_size = (12 , 12 ), crop_pct = 1.0 ,
974
984
),
985
+ # 'efficientvit_l0_sam.sam': _cfg(
986
+ # # hf_hub_id='timm/',
987
+ # input_size=(3, 512, 512), crop_pct=1.0,
988
+ # num_classes=0,
989
+ # ),
990
+ # 'efficientvit_l1_sam.sam': _cfg(
991
+ # # hf_hub_id='timm/',
992
+ # input_size=(3, 512, 512), crop_pct=1.0,
993
+ # num_classes=0,
994
+ # ),
995
+ # 'efficientvit_l2_sam.sam': _cfg(
996
+ # # hf_hub_id='timm/',f
997
+ # input_size=(3, 512, 512), crop_pct=1.0,
998
+ # num_classes=0,
999
+ # ),
975
1000
})
976
1001
977
1002
@@ -1048,22 +1073,26 @@ def efficientvit_l3(pretrained=False, **kwargs):
1048
1073
return _create_efficientvit_large ('efficientvit_l3' , pretrained = pretrained , ** dict (model_args , ** kwargs ))
1049
1074
1050
1075
1051
- @register_model
1052
- def efficientvit_l0_sam (pretrained = False , ** kwargs ):
1053
- model_args = dict (
1054
- widths = (32 , 64 , 128 , 256 , 512 ), depths = (1 , 1 , 1 , 4 , 4 ), head_dim = 32 , num_classes = 0 , norm_eps = 1e-6 ) # only backbone for segment-anything-model weights
1055
- return _create_efficientvit_large ('efficientvit_l0_sam' , pretrained = pretrained , ** dict (model_args , ** kwargs ))
1056
-
1057
-
1058
- @register_model
1059
- def efficientvit_l1_sam (pretrained = False , ** kwargs ):
1060
- model_args = dict (
1061
- widths = (32 , 64 , 128 , 256 , 512 ), depths = (1 , 1 , 1 , 6 , 6 ), head_dim = 32 , num_classes = 0 , norm_eps = 1e-6 ) # only backbone for segment-anything-model weights
1062
- return _create_efficientvit_large ('efficientvit_l1_sam' , pretrained = pretrained , ** dict (model_args , ** kwargs ))
1063
-
1064
-
1065
- @register_model
1066
- def efficientvit_l2_sam (pretrained = False , ** kwargs ):
1067
- model_args = dict (
1068
- widths = (32 , 64 , 128 , 256 , 512 ), depths = (1 , 2 , 2 , 8 , 8 ), head_dim = 32 , num_classes = 0 , norm_eps = 1e-6 ) # only backbone for segment-anything-model weights
1069
- return _create_efficientvit_large ('efficientvit_l2_sam' , pretrained = pretrained , ** dict (model_args , ** kwargs ))
1076
+ # FIXME will wait for v2 SAM models which are pending
1077
+ # @register_model
1078
+ # def efficientvit_l0_sam(pretrained=False, **kwargs):
1079
+ # # only backbone for segment-anything-model weights
1080
+ # model_args = dict(
1081
+ # widths=(32, 64, 128, 256, 512), depths=(1, 1, 1, 4, 4), head_dim=32, num_classes=0, norm_eps=1e-6)
1082
+ # return _create_efficientvit_large('efficientvit_l0_sam', pretrained=pretrained, **dict(model_args, **kwargs))
1083
+ #
1084
+ #
1085
+ # @register_model
1086
+ # def efficientvit_l1_sam(pretrained=False, **kwargs):
1087
+ # # only backbone for segment-anything-model weights
1088
+ # model_args = dict(
1089
+ # widths=(32, 64, 128, 256, 512), depths=(1, 1, 1, 6, 6), head_dim=32, num_classes=0, norm_eps=1e-6)
1090
+ # return _create_efficientvit_large('efficientvit_l1_sam', pretrained=pretrained, **dict(model_args, **kwargs))
1091
+ #
1092
+ #
1093
+ # @register_model
1094
+ # def efficientvit_l2_sam(pretrained=False, **kwargs):
1095
+ # # only backbone for segment-anything-model weights
1096
+ # model_args = dict(
1097
+ # widths=(32, 64, 128, 256, 512), depths=(1, 2, 2, 8, 8), head_dim=32, num_classes=0, norm_eps=1e-6)
1098
+ # return _create_efficientvit_large('efficientvit_l2_sam', pretrained=pretrained, **dict(model_args, **kwargs))
0 commit comments