@@ -56,6 +56,8 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
56
56
model_desc = 'Trained from scratch in PyTorch w/ RandAugment' ),
57
57
_entry ('efficientnet_es' , 'EfficientNet-EdgeTPU-S' , '1905.11946' ,
58
58
model_desc = 'Trained from scratch in PyTorch w/ RandAugment' ),
59
+ _entry ('efficientnet_em' , 'EfficientNet-EdgeTPU-M' , '1905.11946' ,
60
+ model_desc = 'Trained from scratch in PyTorch w/ RandAugment' ),
59
61
60
62
_entry ('gluon_inception_v3' , 'Inception V3' , '1512.00567' , model_desc = 'Ported from GluonCV Model Zoo' ),
61
63
_entry ('gluon_resnet18_v1b' , 'ResNet-18' , '1812.01187' , model_desc = 'Ported from GluonCV Model Zoo' ),
@@ -111,8 +113,11 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
111
113
model_desc = "'D' variant (3x3 deep stem w/ avg-pool downscale). Trained with "
112
114
"SGD w/ cosine LR decay, random-erasing (gaussian per-pixel noise) and label-smoothing" ),
113
115
116
+ _entry ('wide_resnet50_2' , 'Wide-ResNet-50' , '1605.07146' ),
117
+
114
118
_entry ('seresnet18' , 'SE-ResNet-18' , '1709.01507' ),
115
119
_entry ('seresnet34' , 'SE-ResNet-34' , '1709.01507' ),
120
+ _entry ('seresnet50' , 'SE-ResNet-50' , '1709.01507' ),
116
121
_entry ('seresnext26_32x4d' , 'SE-ResNeXt-26 32x4d' , '1709.01507' ,
117
122
model_desc = 'Block cfg of SE-ResNeXt-34 w/ Bottleneck' ),
118
123
_entry ('seresnext26d_32x4d' , 'SE-ResNeXt-26-D 32x4d' , '1812.01187' ,
@@ -121,6 +126,7 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
121
126
model_desc = 'Block cfg of SE-ResNeXt-34 w/ Bottleneck, deep tiered stem, and avg-pool in downsample layers.' ),
122
127
_entry ('seresnext26tn_32x4d' , 'SE-ResNeXt-26-TN 32x4d' , '1812.01187' ,
123
128
model_desc = 'Block cfg of SE-ResNeXt-34 w/ Bottleneck, deep tiered narrow stem, and avg-pool in downsample layers.' ),
129
+ _entry ('seresnext50_32x4d' , 'SE-ResNeXt-50 32x4d' , '1709.01507' ),
124
130
125
131
_entry ('skresnet18' , 'SK-ResNet-18' , '1903.06586' ),
126
132
_entry ('skresnet34' , 'SK-ResNet-34' , '1903.06586' ),
@@ -139,6 +145,7 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
139
145
_entry ('densenetblur121d' , 'DenseNet-Blur-121D' , '1904.11486' ,
140
146
model_desc = 'DenseNet with blur pooling and deep stem' ),
141
147
148
+ _entry ('ese_vovnet19b_dw' , 'VoVNet-19-DW-V2' , '1911.06667' ),
142
149
_entry ('ese_vovnet39b' , 'VoVNet-39-V2' , '1911.06667' ),
143
150
144
151
_entry ('tf_efficientnet_b0' , 'EfficientNet-B0 (AutoAugment)' , '1905.11946' ,
@@ -247,13 +254,13 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
247
254
_entry ('inception_v4' , 'Inception V4' , '1602.07261' ),
248
255
_entry ('nasnetalarge' , 'NASNet-A Large' , '1707.07012' , batch_size = BATCH_SIZE // 4 ),
249
256
_entry ('pnasnet5large' , 'PNASNet-5' , '1712.00559' , batch_size = BATCH_SIZE // 4 ),
250
- _entry ('seresnet50' , 'SE-ResNet-50' , '1709.01507' ),
251
- _entry ('seresnet101' , 'SE-ResNet-101' , '1709.01507' ),
252
- _entry ('seresnet152' , 'SE-ResNet-152' , '1709.01507' ),
253
- _entry ('seresnext50_32x4d' , 'SE-ResNeXt-50 32x4d' , '1709.01507' ),
254
- _entry ('seresnext101_32x4d' , 'SE-ResNeXt-101 32x4d' , '1709.01507' ),
255
- _entry ('senet154' , 'SENet-154' , '1709.01507' ),
256
257
_entry ('xception' , 'Xception' , '1610.02357' , batch_size = BATCH_SIZE // 2 ),
258
+ _entry ('legacy_seresnet50' , 'SE-ResNet-50' , '1709.01507' ),
259
+ _entry ('legacy_seresnet101' , 'SE-ResNet-101' , '1709.01507' ),
260
+ _entry ('legacy_seresnet152' , 'SE-ResNet-152' , '1709.01507' ),
261
+ _entry ('legacy_seresnext50_32x4d' , 'SE-ResNeXt-50 32x4d' , '1709.01507' ),
262
+ _entry ('legacy_seresnext101_32x4d' , 'SE-ResNeXt-101 32x4d' , '1709.01507' ),
263
+ _entry ('legacy_senet154' , 'SENet-154' , '1709.01507' ),
257
264
258
265
## Torchvision weights
259
266
# _entry('densenet121'),
@@ -443,12 +450,6 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
443
450
444
451
]
445
452
446
- # FIXME debug sotabench dataset issues
447
- from pprint import pprint
448
- from glob import glob
449
- pprint ([glob ('./**' , recursive = True )])
450
- pprint ([glob ('./.data/vision/**' , recursive = True )])
451
-
452
453
for m in model_list :
453
454
model_name = m ['model' ]
454
455
# create model from name
0 commit comments