Skip to content

Commit 9c40653

Browse files
committed
Add EfficientNet-EdgeTPU-M (efficientnet_em) model trained natively in PyTorch. More sotabench fiddling.
1 parent 3681c5c commit 9c40653

File tree

3 files changed

+22
-13
lines changed

3 files changed

+22
-13
lines changed

sotabench.py

Lines changed: 13 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -56,6 +56,8 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
5656
model_desc='Trained from scratch in PyTorch w/ RandAugment'),
5757
_entry('efficientnet_es', 'EfficientNet-EdgeTPU-S', '1905.11946',
5858
model_desc='Trained from scratch in PyTorch w/ RandAugment'),
59+
_entry('efficientnet_em', 'EfficientNet-EdgeTPU-M', '1905.11946',
60+
model_desc='Trained from scratch in PyTorch w/ RandAugment'),
5961

6062
_entry('gluon_inception_v3', 'Inception V3', '1512.00567', model_desc='Ported from GluonCV Model Zoo'),
6163
_entry('gluon_resnet18_v1b', 'ResNet-18', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
@@ -111,8 +113,11 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
111113
model_desc="'D' variant (3x3 deep stem w/ avg-pool downscale). Trained with "
112114
"SGD w/ cosine LR decay, random-erasing (gaussian per-pixel noise) and label-smoothing"),
113115

116+
_entry('wide_resnet50_2', 'Wide-ResNet-50', '1605.07146'),
117+
114118
_entry('seresnet18', 'SE-ResNet-18', '1709.01507'),
115119
_entry('seresnet34', 'SE-ResNet-34', '1709.01507'),
120+
_entry('seresnet50', 'SE-ResNet-50', '1709.01507'),
116121
_entry('seresnext26_32x4d', 'SE-ResNeXt-26 32x4d', '1709.01507',
117122
model_desc='Block cfg of SE-ResNeXt-34 w/ Bottleneck'),
118123
_entry('seresnext26d_32x4d', 'SE-ResNeXt-26-D 32x4d', '1812.01187',
@@ -121,6 +126,7 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
121126
model_desc='Block cfg of SE-ResNeXt-34 w/ Bottleneck, deep tiered stem, and avg-pool in downsample layers.'),
122127
_entry('seresnext26tn_32x4d', 'SE-ResNeXt-26-TN 32x4d', '1812.01187',
123128
model_desc='Block cfg of SE-ResNeXt-34 w/ Bottleneck, deep tiered narrow stem, and avg-pool in downsample layers.'),
129+
_entry('seresnext50_32x4d', 'SE-ResNeXt-50 32x4d', '1709.01507'),
124130

125131
_entry('skresnet18', 'SK-ResNet-18', '1903.06586'),
126132
_entry('skresnet34', 'SK-ResNet-34', '1903.06586'),
@@ -139,6 +145,7 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
139145
_entry('densenetblur121d', 'DenseNet-Blur-121D', '1904.11486',
140146
model_desc='DenseNet with blur pooling and deep stem'),
141147

148+
_entry('ese_vovnet19b_dw', 'VoVNet-19-DW-V2', '1911.06667'),
142149
_entry('ese_vovnet39b', 'VoVNet-39-V2', '1911.06667'),
143150

144151
_entry('tf_efficientnet_b0', 'EfficientNet-B0 (AutoAugment)', '1905.11946',
@@ -247,13 +254,13 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
247254
_entry('inception_v4', 'Inception V4', '1602.07261'),
248255
_entry('nasnetalarge', 'NASNet-A Large', '1707.07012', batch_size=BATCH_SIZE // 4),
249256
_entry('pnasnet5large', 'PNASNet-5', '1712.00559', batch_size=BATCH_SIZE // 4),
250-
_entry('seresnet50', 'SE-ResNet-50', '1709.01507'),
251-
_entry('seresnet101', 'SE-ResNet-101', '1709.01507'),
252-
_entry('seresnet152', 'SE-ResNet-152', '1709.01507'),
253-
_entry('seresnext50_32x4d', 'SE-ResNeXt-50 32x4d', '1709.01507'),
254-
_entry('seresnext101_32x4d', 'SE-ResNeXt-101 32x4d', '1709.01507'),
255-
_entry('senet154', 'SENet-154', '1709.01507'),
256257
_entry('xception', 'Xception', '1610.02357', batch_size=BATCH_SIZE//2),
258+
_entry('legacy_seresnet50', 'SE-ResNet-50', '1709.01507'),
259+
_entry('legacy_seresnet101', 'SE-ResNet-101', '1709.01507'),
260+
_entry('legacy_seresnet152', 'SE-ResNet-152', '1709.01507'),
261+
_entry('legacy_seresnext50_32x4d', 'SE-ResNeXt-50 32x4d', '1709.01507'),
262+
_entry('legacy_seresnext101_32x4d', 'SE-ResNeXt-101 32x4d', '1709.01507'),
263+
_entry('legacy_senet154', 'SENet-154', '1709.01507'),
257264

258265
## Torchvision weights
259266
# _entry('densenet121'),
@@ -443,12 +450,6 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
443450

444451
]
445452

446-
# FIXME debug sotabench dataset issues
447-
from pprint import pprint
448-
from glob import glob
449-
pprint([glob('./**', recursive=True)])
450-
pprint([glob('./.data/vision/**', recursive=True)])
451-
452453
for m in model_list:
453454
model_name = m['model']
454455
# create model from name

sotabench_setup.sh

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -3,3 +3,10 @@ source /workspace/venv/bin/activate
33

44
pip install -r requirements-sotabench.txt
55

6+
pip uninstall -y pillow
7+
CC="cc -mavx2" pip install -U --force-reinstall pillow-simd
8+
9+
# FIXME this shouldn't be needed but sb dataset upload functionality doesn't seem to work
10+
apt-get install wget
11+
wget https://onedrive.hyper.ai/down/ImageNet/data/ImageNet2012/ILSVRC2012_devkit_t12.tar.gz -P ./.data/vision/imagenet
12+
wget https://onedrive.hyper.ai/down/ImageNet/data/ImageNet2012/ILSVRC2012_img_val.tar -P ./.data/vision/imagenet

timm/models/efficientnet.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -114,7 +114,8 @@ def _cfg(url='', **kwargs):
114114
'efficientnet_es': _cfg(
115115
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_es_ra-f111e99c.pth'),
116116
'efficientnet_em': _cfg(
117-
url='', input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882),
117+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_em_ra2-66250f76.pth',
118+
input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882),
118119
'efficientnet_el': _cfg(
119120
url='', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904),
120121

0 commit comments

Comments
 (0)