@@ -56,8 +56,7 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
56
56
model_desc = 'Trained from scratch in PyTorch w/ RandAugment' ),
57
57
_entry ('efficientnet_es' , 'EfficientNet-EdgeTPU-S' , '1905.11946' ,
58
58
model_desc = 'Trained from scratch in PyTorch w/ RandAugment' ),
59
- _entry ('fbnetc_100' , 'FBNet-C' , '1812.03443' ,
60
- model_desc = 'Trained in PyTorch with RMSProp, exponential LR decay' ),
59
+
61
60
_entry ('gluon_inception_v3' , 'Inception V3' , '1512.00567' , model_desc = 'Ported from GluonCV Model Zoo' ),
62
61
_entry ('gluon_resnet18_v1b' , 'ResNet-18' , '1812.01187' , model_desc = 'Ported from GluonCV Model Zoo' ),
63
62
_entry ('gluon_resnet34_v1b' , 'ResNet-34' , '1812.01187' , model_desc = 'Ported from GluonCV Model Zoo' ),
@@ -82,14 +81,22 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
82
81
_entry ('gluon_seresnext101_64x4d' , 'SE-ResNeXt-101 64x4d' , '1812.01187' , model_desc = 'Ported from GluonCV Model Zoo' ),
83
82
_entry ('gluon_xception65' , 'Modified Aligned Xception' , '1802.02611' , batch_size = BATCH_SIZE // 2 ,
84
83
model_desc = 'Ported from GluonCV Model Zoo' ),
84
+
85
85
_entry ('mixnet_xl' , 'MixNet-XL' , '1907.09595' , model_desc = "My own scaling beyond paper's MixNet Large" ),
86
86
_entry ('mixnet_l' , 'MixNet-L' , '1907.09595' ),
87
87
_entry ('mixnet_m' , 'MixNet-M' , '1907.09595' ),
88
88
_entry ('mixnet_s' , 'MixNet-S' , '1907.09595' ),
89
+
90
+ _entry ('fbnetc_100' , 'FBNet-C' , '1812.03443' ,
91
+ model_desc = 'Trained in PyTorch with RMSProp, exponential LR decay' ),
89
92
_entry ('mnasnet_100' , 'MnasNet-B1' , '1807.11626' ),
93
+ _entry ('semnasnet_100' , 'MnasNet-A1' , '1807.11626' ),
94
+ _entry ('spnasnet_100' , 'Single-Path NAS' , '1904.02877' ,
95
+ model_desc = 'Trained in PyTorch with SGD, cosine LR decay' ),
90
96
_entry ('mobilenetv3_rw' , 'MobileNet V3-Large 1.0' , '1905.02244' ,
91
97
model_desc = 'Trained in PyTorch with RMSProp, exponential LR decay, and hyper-params matching '
92
98
'paper as closely as possible.' ),
99
+
93
100
_entry ('resnet18' , 'ResNet-18' , '1812.01187' ),
94
101
_entry ('resnet26' , 'ResNet-26' , '1812.01187' , model_desc = 'Block cfg of ResNet-34 w/ Bottleneck' ),
95
102
_entry ('resnet26d' , 'ResNet-26-D' , '1812.01187' ,
@@ -103,7 +110,7 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
103
110
_entry ('resnext50d_32x4d' , 'ResNeXt-50-D 32x4d' , '1812.01187' ,
104
111
model_desc = "'D' variant (3x3 deep stem w/ avg-pool downscale). Trained with "
105
112
"SGD w/ cosine LR decay, random-erasing (gaussian per-pixel noise) and label-smoothing" ),
106
- _entry ( 'semnasnet_100' , 'MnasNet-A1' , '1807.11626' ),
113
+
107
114
_entry ('seresnet18' , 'SE-ResNet-18' , '1709.01507' ),
108
115
_entry ('seresnet34' , 'SE-ResNet-34' , '1709.01507' ),
109
116
_entry ('seresnext26_32x4d' , 'SE-ResNeXt-26 32x4d' , '1709.01507' ,
@@ -114,8 +121,9 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
114
121
model_desc = 'Block cfg of SE-ResNeXt-34 w/ Bottleneck, deep tiered stem, and avg-pool in downsample layers.' ),
115
122
_entry ('seresnext26tn_32x4d' , 'SE-ResNeXt-26-TN 32x4d' , '1812.01187' ,
116
123
model_desc = 'Block cfg of SE-ResNeXt-34 w/ Bottleneck, deep tiered narrow stem, and avg-pool in downsample layers.' ),
117
- _entry ('spnasnet_100' , 'Single-Path NAS' , '1904.02877' ,
118
- model_desc = 'Trained in PyTorch with SGD, cosine LR decay' ),
124
+
125
+ _entry ('skresnet18' , 'SK-ResNet-18' , '1903.06586' ),
126
+ _entry ('skresnext50_32x4d' , 'SKNet-50' , '1903.06586' ),
119
127
120
128
_entry ('tf_efficientnet_b0' , 'EfficientNet-B0 (AutoAugment)' , '1905.11946' ,
121
129
model_desc = 'Ported from official Google AI Tensorflow weights' ),
0 commit comments