|
5 | 5 | import torch.nn as nn
|
6 | 6 | import torch.nn.functional as F
|
7 | 7 |
|
8 |
| -from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD |
| 8 | +from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD |
9 | 9 | from timm.layers import (
|
10 | 10 | SelectAdaptivePool2d, Linear, LayerType, PadType, RmsNorm2d, ConvNormAct, create_conv2d, get_norm_act_layer,
|
11 | 11 | to_2tuple
|
12 | 12 | )
|
13 |
| -from ._builder import build_model_with_cfg, pretrained_cfg_for_features |
| 13 | +from ._builder import build_model_with_cfg |
14 | 14 | from ._efficientnet_blocks import SqueezeExcite, UniversalInvertedResidual
|
15 | 15 | from ._efficientnet_builder import BlockArgs, EfficientNetBuilder, decode_arch_def, efficientnet_init_weights, \
|
16 |
| - round_channels, resolve_bn_args, resolve_act_layer, BN_EPS_TF_DEFAULT |
17 |
| -from ._features import FeatureInfo, FeatureHooks, feature_take_indices |
| 16 | + round_channels, resolve_act_layer |
| 17 | +from ._features import feature_take_indices |
| 18 | +from ._features_fx import register_notrace_module |
18 | 19 | from ._manipulate import checkpoint_seq, checkpoint
|
19 |
| -from ._registry import generate_default_cfgs, register_model, register_model_deprecations |
| 20 | +from ._registry import generate_default_cfgs, register_model |
20 | 21 |
|
21 | 22 | __all__ = ['MobileNetV5', 'MobileNetV5Encoder']
|
22 | 23 |
|
23 | 24 |
|
| 25 | +@register_notrace_module |
24 | 26 | class MobileNetV5MultiScaleFusionAdapter(nn.Module):
|
25 | 27 | """Multi-layer fusion token adapter.
|
26 | 28 |
|
|
0 commit comments