Skip to content

Commit 4808b3c

Browse files
committed
Bump version for PyPi update, fix few out of date README items/mistakes, add README updates for TF EfficientNet-B8 (RandAugment)
1 parent 5c85389 commit 4808b3c

File tree

2 files changed

+14
-7
lines changed

2 files changed

+14
-7
lines changed

README.md

Lines changed: 13 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,11 @@
22

33
## What's New
44

5+
### Feb 1/2, 2020
6+
* Port new EfficientNet-B8 (RandAugment) weights, these are different than the B8 AdvProp, different input normalization.
7+
* Update results csv files on all models for ImageNet validation and three other test sets
8+
* Push PyPi package update
9+
510
### Jan 31, 2020
611
* Update ResNet50 weights with a new 79.038 result from further JSD / AugMix experiments. Full command line for reproduction in training section below.
712

@@ -87,9 +92,9 @@ Included models:
8792
* Original variant from [Cadene](https://github.com/Cadene/pretrained-models.pytorch)
8893
* MXNet Gluon 'modified aligned' Xception-65 and 71 models from [Gluon ModelZoo](https://github.com/dmlc/gluon-cv/tree/master/gluoncv/model_zoo)
8994
* PNasNet & NASNet-A (from [Cadene](https://github.com/Cadene/pretrained-models.pytorch))
90-
* DPN (from [me](https://github.com/rwightman/pytorch-dpn-pretrained), weights hosted by Cadene)
95+
* DPN (from [myself](https://github.com/rwightman/pytorch-dpn-pretrained))
9196
* DPN-68, DPN-68b, DPN-92, DPN-98, DPN-131, DPN-107
92-
* EfficientNet (from my standalone [GenMobileNet](https://github.com/rwightman/genmobilenet-pytorch)) - A generic model that implements many of the efficient models that utilize similar DepthwiseSeparable and InvertedResidual blocks
97+
* EfficientNet (from my standalone [GenEfficientNet](https://github.com/rwightman/gen-efficientnet-pytorch)) - A generic model that implements many of the efficient models that utilize similar DepthwiseSeparable and InvertedResidual blocks
9398
* EfficientNet AdvProp (B0-B8) (https://arxiv.org/abs/1911.09665) -- TF weights ported
9499
* EfficientNet (B0-B7) (https://arxiv.org/abs/1905.11946) -- TF weights ported, B0-B2 finetuned PyTorch
95100
* EfficientNet-EdgeTPU (S, M, L) (https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html) --TF weights ported
@@ -136,8 +141,8 @@ I've leveraged the training scripts in this repository to train a few of the mod
136141

137142
|Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling | Image Size |
138143
|---|---|---|---|---|---|
139-
| efficientnet_b3a | 81.874 (18.126) | 95.840 (4.160) | 9.11M | bicubic | 320 (1.0 crop) |
140-
| efficientnet_b3 | 81.498 (18.502) | 95.718 (4.282) | 9.11M | bicubic | 300 |
144+
| efficientnet_b3a | 81.874 (18.126) | 95.840 (4.160) | 12.23M | bicubic | 320 (1.0 crop) |
145+
| efficientnet_b3 | 81.498 (18.502) | 95.718 (4.282) | 12.23M | bicubic | 300 |
141146
| efficientnet_b2a | 80.608 (19.392) | 95.310 (4.690) | 9.11M | bicubic | 288 (1.0 crop) |
142147
| mixnet_xl | 80.478 (19.522) | 94.932 (5.068) | 11.90M | bicubic | 224 |
143148
| efficientnet_b2 | 80.402 (19.598) | 95.076 (4.924) | 9.11M | bicubic | 260 |
@@ -170,6 +175,8 @@ For the models below, the model code and weight porting from Tensorflow or MXNet
170175
| Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling | Image Size |
171176
|---|---|---|---|---|---|
172177
| tf_efficientnet_b8_ap *tfp | 85.436 (14.564) | 97.272 (2.728) | 87.4 | bicubic | 672 |
178+
| tf_efficientnet_b8 *tfp | 85.384 (14.616) | 97.394 (2.606) | 87.4 | bicubic | 672 |
179+
| tf_efficientnet_b8 | 85.37 (14.63) | 97.39 (2.61) | 87.4 | bicubic | 672 |
173180
| tf_efficientnet_b8_ap | 85.368 (14.632) | 97.294 (2.706) | 87.4 | bicubic | 672 |
174181
| tf_efficientnet_b7_ap *tfp | 85.154 (14.846) | 97.244 (2.756) | 66.35 | bicubic | 600 |
175182
| tf_efficientnet_b7_ap | 85.118 (14.882) | 97.252 (2.748) | 66.35 | bicubic | 600 |
@@ -309,13 +316,13 @@ Trained on two older 1080Ti cards, this took a while. Only slightly, non statist
309316

310317
All development and testing has been done in Conda Python 3 environments on Linux x86-64 systems, specifically Python 3.6.x and 3.7.x. Little to no care has been taken to be Python 2.x friendly and I don't plan to support it. If you run into any challenges running on Windows, or other OS, I'm definitely open to looking into those issues so long as it's in a reproducible (read Conda) environment.
311318

312-
PyTorch versions 1.2 and 1.3.1 have been tested with this code.
319+
PyTorch versions 1.2, 1.3.1, and 1.4 have been tested with this code.
313320

314321
I've tried to keep the dependencies minimal, the setup is as per the PyTorch default install instructions for Conda:
315322
```
316323
conda create -n torch-env
317324
conda activate torch-env
318-
conda install -c pytorch pytorch torchvision cudatoolkit=10
325+
conda install -c pytorch pytorch torchvision cudatoolkit=10.1
319326
conda install pyyaml
320327
```
321328

timm/version.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
__version__ = '0.1.14'
1+
__version__ = '0.1.16'

0 commit comments

Comments
 (0)