43
43
metavar = 'N' , help = 'mini-batch size (default: 1)' )
44
44
parser .add_argument ('--img-size' , default = None , type = int ,
45
45
metavar = 'N' , help = 'Input image dimension, uses model default if empty' )
46
+ parser .add_argument ('--input-size' , default = None , nargs = 3 , type = int , metavar = 'N' ,
47
+ help = 'Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty' )
46
48
parser .add_argument ('--mean' , type = float , nargs = '+' , default = None , metavar = 'MEAN' ,
47
49
help = 'Override mean pixel value of dataset' )
48
50
parser .add_argument ('--std' , type = float , nargs = '+' , default = None , metavar = 'STD' ,
@@ -82,6 +84,14 @@ def main():
82
84
if args .reparam :
83
85
model = reparameterize_model (model )
84
86
87
+ if args .input_size is not None :
88
+ assert len (args .input_size ) == 3 , 'input-size should be N H W (channels, height, width)'
89
+ input_size = args .input_size
90
+ elif args .img_size is not None :
91
+ input_size = (3 , args .img_size , args .img_size )
92
+ else :
93
+ input_size = None
94
+
85
95
onnx_export (
86
96
model ,
87
97
args .output ,
@@ -93,7 +103,7 @@ def main():
93
103
training = args .training ,
94
104
verbose = args .verbose ,
95
105
use_dynamo = args .dynamo ,
96
- input_size = ( 3 , args . img_size , args . img_size ) ,
106
+ input_size = input_size ,
97
107
batch_size = args .batch_size ,
98
108
)
99
109
0 commit comments