@@ -253,7 +253,7 @@ class EfficientNet(nn.Module):
253
253
254
254
def __init__ (self , block_args , num_classes = 1000 , num_features = 1280 , in_chans = 3 , stem_size = 32 ,
255
255
channel_multiplier = 1.0 , channel_divisor = 8 , channel_min = None ,
256
- output_stride = 32 , pad_type = '' , act_layer = nn .ReLU , drop_rate = 0. , drop_connect_rate = 0. ,
256
+ output_stride = 32 , pad_type = '' , act_layer = nn .ReLU , drop_rate = 0. , drop_path_rate = 0. ,
257
257
se_kwargs = None , norm_layer = nn .BatchNorm2d , norm_kwargs = None , global_pool = 'avg' ):
258
258
super (EfficientNet , self ).__init__ ()
259
259
norm_kwargs = norm_kwargs or {}
@@ -273,7 +273,7 @@ def __init__(self, block_args, num_classes=1000, num_features=1280, in_chans=3,
273
273
# Middle stages (IR/ER/DS Blocks)
274
274
builder = EfficientNetBuilder (
275
275
channel_multiplier , channel_divisor , channel_min , output_stride , pad_type , act_layer , se_kwargs ,
276
- norm_layer , norm_kwargs , drop_connect_rate , verbose = _DEBUG )
276
+ norm_layer , norm_kwargs , drop_path_rate , verbose = _DEBUG )
277
277
self .blocks = nn .Sequential (* builder (self ._in_chs , block_args ))
278
278
self .feature_info = builder .features
279
279
self ._in_chs = builder .in_chs
@@ -333,7 +333,7 @@ class EfficientNetFeatures(nn.Module):
333
333
334
334
def __init__ (self , block_args , out_indices = (0 , 1 , 2 , 3 , 4 ), feature_location = 'pre_pwl' ,
335
335
in_chans = 3 , stem_size = 32 , channel_multiplier = 1.0 , channel_divisor = 8 , channel_min = None ,
336
- output_stride = 32 , pad_type = '' , act_layer = nn .ReLU , drop_rate = 0. , drop_connect_rate = 0. ,
336
+ output_stride = 32 , pad_type = '' , act_layer = nn .ReLU , drop_rate = 0. , drop_path_rate = 0. ,
337
337
se_kwargs = None , norm_layer = nn .BatchNorm2d , norm_kwargs = None ):
338
338
super (EfficientNetFeatures , self ).__init__ ()
339
339
norm_kwargs = norm_kwargs or {}
@@ -355,7 +355,7 @@ def __init__(self, block_args, out_indices=(0, 1, 2, 3, 4), feature_location='pr
355
355
# Middle stages (IR/ER/DS Blocks)
356
356
builder = EfficientNetBuilder (
357
357
channel_multiplier , channel_divisor , channel_min , output_stride , pad_type , act_layer , se_kwargs ,
358
- norm_layer , norm_kwargs , drop_connect_rate , feature_location = feature_location , verbose = _DEBUG )
358
+ norm_layer , norm_kwargs , drop_path_rate , feature_location = feature_location , verbose = _DEBUG )
359
359
self .blocks = nn .Sequential (* builder (self ._in_chs , block_args ))
360
360
self .feature_info = builder .features # builder provides info about feature channels for each block
361
361
self ._in_chs = builder .in_chs
@@ -875,7 +875,7 @@ def spnasnet_100(pretrained=False, **kwargs):
875
875
@register_model
876
876
def efficientnet_b0 (pretrained = False , ** kwargs ):
877
877
""" EfficientNet-B0 """
878
- # NOTE for train, drop_rate should be 0.2, drop_connect_rate should be 0.2
878
+ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2
879
879
model = _gen_efficientnet (
880
880
'efficientnet_b0' , channel_multiplier = 1.0 , depth_multiplier = 1.0 , pretrained = pretrained , ** kwargs )
881
881
return model
@@ -884,7 +884,7 @@ def efficientnet_b0(pretrained=False, **kwargs):
884
884
@register_model
885
885
def efficientnet_b1 (pretrained = False , ** kwargs ):
886
886
""" EfficientNet-B1 """
887
- # NOTE for train, drop_rate should be 0.2, drop_connect_rate should be 0.2
887
+ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2
888
888
model = _gen_efficientnet (
889
889
'efficientnet_b1' , channel_multiplier = 1.0 , depth_multiplier = 1.1 , pretrained = pretrained , ** kwargs )
890
890
return model
@@ -893,7 +893,7 @@ def efficientnet_b1(pretrained=False, **kwargs):
893
893
@register_model
894
894
def efficientnet_b2 (pretrained = False , ** kwargs ):
895
895
""" EfficientNet-B2 """
896
- # NOTE for train, drop_rate should be 0.3, drop_connect_rate should be 0.2
896
+ # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2
897
897
model = _gen_efficientnet (
898
898
'efficientnet_b2' , channel_multiplier = 1.1 , depth_multiplier = 1.2 , pretrained = pretrained , ** kwargs )
899
899
return model
@@ -902,7 +902,7 @@ def efficientnet_b2(pretrained=False, **kwargs):
902
902
@register_model
903
903
def efficientnet_b2a (pretrained = False , ** kwargs ):
904
904
""" EfficientNet-B2 @ 288x288 w/ 1.0 test crop"""
905
- # NOTE for train, drop_rate should be 0.3, drop_connect_rate should be 0.2
905
+ # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2
906
906
model = _gen_efficientnet (
907
907
'efficientnet_b2a' , channel_multiplier = 1.1 , depth_multiplier = 1.2 , pretrained = pretrained , ** kwargs )
908
908
return model
@@ -911,7 +911,7 @@ def efficientnet_b2a(pretrained=False, **kwargs):
911
911
@register_model
912
912
def efficientnet_b3 (pretrained = False , ** kwargs ):
913
913
""" EfficientNet-B3 """
914
- # NOTE for train, drop_rate should be 0.3, drop_connect_rate should be 0.2
914
+ # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2
915
915
model = _gen_efficientnet (
916
916
'efficientnet_b3' , channel_multiplier = 1.2 , depth_multiplier = 1.4 , pretrained = pretrained , ** kwargs )
917
917
return model
@@ -920,7 +920,7 @@ def efficientnet_b3(pretrained=False, **kwargs):
920
920
@register_model
921
921
def efficientnet_b3a (pretrained = False , ** kwargs ):
922
922
""" EfficientNet-B3 @ 320x320 w/ 1.0 test crop-pct """
923
- # NOTE for train, drop_rate should be 0.3, drop_connect_rate should be 0.2
923
+ # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2
924
924
model = _gen_efficientnet (
925
925
'efficientnet_b3a' , channel_multiplier = 1.2 , depth_multiplier = 1.4 , pretrained = pretrained , ** kwargs )
926
926
return model
@@ -929,7 +929,7 @@ def efficientnet_b3a(pretrained=False, **kwargs):
929
929
@register_model
930
930
def efficientnet_b4 (pretrained = False , ** kwargs ):
931
931
""" EfficientNet-B4 """
932
- # NOTE for train, drop_rate should be 0.4, drop_connect_rate should be 0.2
932
+ # NOTE for train, drop_rate should be 0.4, drop_path_rate should be 0.2
933
933
model = _gen_efficientnet (
934
934
'efficientnet_b4' , channel_multiplier = 1.4 , depth_multiplier = 1.8 , pretrained = pretrained , ** kwargs )
935
935
return model
@@ -938,7 +938,7 @@ def efficientnet_b4(pretrained=False, **kwargs):
938
938
@register_model
939
939
def efficientnet_b5 (pretrained = False , ** kwargs ):
940
940
""" EfficientNet-B5 """
941
- # NOTE for train, drop_rate should be 0.4, drop_connect_rate should be 0.2
941
+ # NOTE for train, drop_rate should be 0.4, drop_path_rate should be 0.2
942
942
model = _gen_efficientnet (
943
943
'efficientnet_b5' , channel_multiplier = 1.6 , depth_multiplier = 2.2 , pretrained = pretrained , ** kwargs )
944
944
return model
@@ -947,7 +947,7 @@ def efficientnet_b5(pretrained=False, **kwargs):
947
947
@register_model
948
948
def efficientnet_b6 (pretrained = False , ** kwargs ):
949
949
""" EfficientNet-B6 """
950
- # NOTE for train, drop_rate should be 0.5, drop_connect_rate should be 0.2
950
+ # NOTE for train, drop_rate should be 0.5, drop_path_rate should be 0.2
951
951
model = _gen_efficientnet (
952
952
'efficientnet_b6' , channel_multiplier = 1.8 , depth_multiplier = 2.6 , pretrained = pretrained , ** kwargs )
953
953
return model
@@ -956,7 +956,7 @@ def efficientnet_b6(pretrained=False, **kwargs):
956
956
@register_model
957
957
def efficientnet_b7 (pretrained = False , ** kwargs ):
958
958
""" EfficientNet-B7 """
959
- # NOTE for train, drop_rate should be 0.5, drop_connect_rate should be 0.2
959
+ # NOTE for train, drop_rate should be 0.5, drop_path_rate should be 0.2
960
960
model = _gen_efficientnet (
961
961
'efficientnet_b7' , channel_multiplier = 2.0 , depth_multiplier = 3.1 , pretrained = pretrained , ** kwargs )
962
962
return model
@@ -965,7 +965,7 @@ def efficientnet_b7(pretrained=False, **kwargs):
965
965
@register_model
966
966
def efficientnet_b8 (pretrained = False , ** kwargs ):
967
967
""" EfficientNet-B8 """
968
- # NOTE for train, drop_rate should be 0.5, drop_connect_rate should be 0.2
968
+ # NOTE for train, drop_rate should be 0.5, drop_path_rate should be 0.2
969
969
model = _gen_efficientnet (
970
970
'efficientnet_b8' , channel_multiplier = 2.2 , depth_multiplier = 3.6 , pretrained = pretrained , ** kwargs )
971
971
return model
@@ -974,7 +974,7 @@ def efficientnet_b8(pretrained=False, **kwargs):
974
974
@register_model
975
975
def efficientnet_l2 (pretrained = False , ** kwargs ):
976
976
""" EfficientNet-L2."""
977
- # NOTE for train, drop_rate should be 0.5, drop_connect_rate should be 0.2
977
+ # NOTE for train, drop_rate should be 0.5, drop_path_rate should be 0.2
978
978
model = _gen_efficientnet (
979
979
'efficientnet_l2' , channel_multiplier = 4.3 , depth_multiplier = 5.3 , pretrained = pretrained , ** kwargs )
980
980
return model
@@ -1007,7 +1007,7 @@ def efficientnet_el(pretrained=False, **kwargs):
1007
1007
@register_model
1008
1008
def efficientnet_cc_b0_4e (pretrained = False , ** kwargs ):
1009
1009
""" EfficientNet-CondConv-B0 w/ 8 Experts """
1010
- # NOTE for train, drop_rate should be 0.2, drop_connect_rate should be 0.2
1010
+ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2
1011
1011
model = _gen_efficientnet_condconv (
1012
1012
'efficientnet_cc_b0_4e' , channel_multiplier = 1.0 , depth_multiplier = 1.0 , pretrained = pretrained , ** kwargs )
1013
1013
return model
@@ -1016,7 +1016,7 @@ def efficientnet_cc_b0_4e(pretrained=False, **kwargs):
1016
1016
@register_model
1017
1017
def efficientnet_cc_b0_8e (pretrained = False , ** kwargs ):
1018
1018
""" EfficientNet-CondConv-B0 w/ 8 Experts """
1019
- # NOTE for train, drop_rate should be 0.2, drop_connect_rate should be 0.2
1019
+ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2
1020
1020
model = _gen_efficientnet_condconv (
1021
1021
'efficientnet_cc_b0_8e' , channel_multiplier = 1.0 , depth_multiplier = 1.0 , experts_multiplier = 2 ,
1022
1022
pretrained = pretrained , ** kwargs )
@@ -1025,7 +1025,7 @@ def efficientnet_cc_b0_8e(pretrained=False, **kwargs):
1025
1025
@register_model
1026
1026
def efficientnet_cc_b1_8e (pretrained = False , ** kwargs ):
1027
1027
""" EfficientNet-CondConv-B1 w/ 8 Experts """
1028
- # NOTE for train, drop_rate should be 0.2, drop_connect_rate should be 0.2
1028
+ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2
1029
1029
model = _gen_efficientnet_condconv (
1030
1030
'efficientnet_cc_b1_8e' , channel_multiplier = 1.0 , depth_multiplier = 1.1 , experts_multiplier = 2 ,
1031
1031
pretrained = pretrained , ** kwargs )
@@ -1355,7 +1355,7 @@ def tf_efficientnet_el(pretrained=False, **kwargs):
1355
1355
@register_model
1356
1356
def tf_efficientnet_cc_b0_4e (pretrained = False , ** kwargs ):
1357
1357
""" EfficientNet-CondConv-B0 w/ 4 Experts. Tensorflow compatible variant """
1358
- # NOTE for train, drop_rate should be 0.2, drop_connect_rate should be 0.2
1358
+ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2
1359
1359
kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
1360
1360
kwargs ['pad_type' ] = 'same'
1361
1361
model = _gen_efficientnet_condconv (
@@ -1366,7 +1366,7 @@ def tf_efficientnet_cc_b0_4e(pretrained=False, **kwargs):
1366
1366
@register_model
1367
1367
def tf_efficientnet_cc_b0_8e (pretrained = False , ** kwargs ):
1368
1368
""" EfficientNet-CondConv-B0 w/ 8 Experts. Tensorflow compatible variant """
1369
- # NOTE for train, drop_rate should be 0.2, drop_connect_rate should be 0.2
1369
+ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2
1370
1370
kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
1371
1371
kwargs ['pad_type' ] = 'same'
1372
1372
model = _gen_efficientnet_condconv (
@@ -1377,7 +1377,7 @@ def tf_efficientnet_cc_b0_8e(pretrained=False, **kwargs):
1377
1377
@register_model
1378
1378
def tf_efficientnet_cc_b1_8e (pretrained = False , ** kwargs ):
1379
1379
""" EfficientNet-CondConv-B1 w/ 8 Experts. Tensorflow compatible variant """
1380
- # NOTE for train, drop_rate should be 0.2, drop_connect_rate should be 0.2
1380
+ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2
1381
1381
kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
1382
1382
kwargs ['pad_type' ] = 'same'
1383
1383
model = _gen_efficientnet_condconv (
0 commit comments