Skip to content

Commit 1ab02a1

Browse files
committed
Update Adan with newer impl (from original source) that includes multi-tensor fn
1 parent a024ab3 commit 1ab02a1

File tree

1 file changed

+219
-48
lines changed

1 file changed

+219
-48
lines changed

timm/optim/adan.py

Lines changed: 219 additions & 48 deletions
Original file line numberDiff line numberDiff line change
@@ -5,52 +5,94 @@
55
66
Implementation adapted from https://github.com/sail-sg/Adan
77
"""
8+
# Copyright 2022 Garena Online Private Limited
9+
#
10+
# Licensed under the Apache License, Version 2.0 (the "License");
11+
# you may not use this file except in compliance with the License.
12+
# You may obtain a copy of the License at
13+
#
14+
# http://www.apache.org/licenses/LICENSE-2.0
15+
#
16+
# Unless required by applicable law or agreed to in writing, software
17+
# distributed under the License is distributed on an "AS IS" BASIS,
18+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19+
# See the License for the specific language governing permissions and
20+
# limitations under the License.
821

922
import math
23+
from typing import List, Tuple
1024

1125
import torch
26+
from torch import Tensor
27+
from torch.optim.optimizer import Optimizer
1228

13-
from torch.optim import Optimizer
29+
30+
class MultiTensorApply(object):
31+
available = False
32+
warned = False
33+
34+
def __init__(self, chunk_size):
35+
try:
36+
MultiTensorApply.available = True
37+
self.chunk_size = chunk_size
38+
except ImportError as err:
39+
MultiTensorApply.available = False
40+
MultiTensorApply.import_err = err
41+
42+
def __call__(self, op, noop_flag_buffer, tensor_lists, *args):
43+
return op(self.chunk_size, noop_flag_buffer, tensor_lists, *args)
1444

1545

1646
class Adan(Optimizer):
17-
"""
18-
Implements a pytorch variant of Adan
19-
Adan was proposed in
20-
Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models[J]. arXiv preprint arXiv:2208.06677, 2022.
47+
""" Implements a pytorch variant of Adan.
48+
49+
Adan was proposed in Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models
2150
https://arxiv.org/abs/2208.06677
51+
2252
Arguments:
23-
params (iterable): iterable of parameters to optimize or dicts defining parameter groups.
24-
lr (float, optional): learning rate. (default: 1e-3)
25-
betas (Tuple[float, float, flot], optional): coefficients used for computing
26-
running averages of gradient and its norm. (default: (0.98, 0.92, 0.99))
27-
eps (float, optional): term added to the denominator to improve
28-
numerical stability. (default: 1e-8)
29-
weight_decay (float, optional): decoupled weight decay (L2 penalty) (default: 0)
30-
no_prox (bool): how to perform the decoupled weight decay (default: False)
53+
params: Iterable of parameters to optimize or dicts defining parameter groups.
54+
lr: Learning rate.
55+
betas: Coefficients used for first- and second-order moments.
56+
eps: Term added to the denominator to improve numerical stability.
57+
weight_decay: Decoupled weight decay (L2 penalty)
58+
no_prox: How to perform the weight decay
59+
foreach: If True would use torch._foreach implementation. Faster but uses slightly more memory.
3160
"""
3261

33-
def __init__(
34-
self,
62+
def __init__(self,
3563
params,
36-
lr=1e-3,
37-
betas=(0.98, 0.92, 0.99),
38-
eps=1e-8,
39-
weight_decay=0.0,
40-
no_prox=False,
64+
lr: float = 1e-3,
65+
betas: Tuple[float, float, float] = (0.98, 0.92, 0.99),
66+
eps: float = 1e-8,
67+
weight_decay: float = 0.0,
68+
no_prox: bool = False,
69+
foreach: bool = True,
4170
):
4271
if not 0.0 <= lr:
43-
raise ValueError("Invalid learning rate: {}".format(lr))
72+
raise ValueError('Invalid learning rate: {}'.format(lr))
4473
if not 0.0 <= eps:
45-
raise ValueError("Invalid epsilon value: {}".format(eps))
74+
raise ValueError('Invalid epsilon value: {}'.format(eps))
4675
if not 0.0 <= betas[0] < 1.0:
47-
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
76+
raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0]))
4877
if not 0.0 <= betas[1] < 1.0:
49-
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
78+
raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1]))
5079
if not 0.0 <= betas[2] < 1.0:
51-
raise ValueError("Invalid beta parameter at index 2: {}".format(betas[2]))
52-
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, no_prox=no_prox)
53-
super(Adan, self).__init__(params, defaults)
80+
raise ValueError('Invalid beta parameter at index 2: {}'.format(betas[2]))
81+
82+
defaults = dict(
83+
lr=lr,
84+
betas=betas,
85+
eps=eps,
86+
weight_decay=weight_decay,
87+
no_prox=no_prox,
88+
foreach=foreach,
89+
)
90+
super().__init__(params, defaults)
91+
92+
def __setstate__(self, state):
93+
super(Adan, self).__setstate__(state)
94+
for group in self.param_groups:
95+
group.setdefault('no_prox', False)
5496

5597
@torch.no_grad()
5698
def restart_opt(self):
@@ -70,17 +112,23 @@ def restart_opt(self):
70112

71113
@torch.no_grad()
72114
def step(self, closure=None):
73-
""" Performs a single optimization step.
74-
"""
115+
"""Performs a single optimization step."""
75116
loss = None
76117
if closure is not None:
77118
with torch.enable_grad():
78119
loss = closure()
79120

80121
for group in self.param_groups:
122+
params_with_grad = []
123+
grads = []
124+
exp_avgs = []
125+
exp_avg_sqs = []
126+
exp_avg_diffs = []
127+
neg_pre_grads = []
128+
81129
beta1, beta2, beta3 = group['betas']
82130
# assume same step across group now to simplify things
83-
# per parameter step can be easily support by making it tensor, or pass list into kernel
131+
# per parameter step can be easily supported by making it a tensor, or pass list into kernel
84132
if 'step' in group:
85133
group['step'] += 1
86134
else:
@@ -93,32 +141,155 @@ def step(self, closure=None):
93141
for p in group['params']:
94142
if p.grad is None:
95143
continue
96-
grad = p.grad
144+
params_with_grad.append(p)
145+
grads.append(p.grad)
97146

98147
state = self.state[p]
99148
if len(state) == 0:
100149
state['exp_avg'] = torch.zeros_like(p)
101-
state['exp_avg_diff'] = torch.zeros_like(p)
102150
state['exp_avg_sq'] = torch.zeros_like(p)
103-
state['pre_grad'] = grad.clone()
151+
state['exp_avg_diff'] = torch.zeros_like(p)
104152

105-
exp_avg, exp_avg_sq, exp_avg_diff = state['exp_avg'], state['exp_avg_diff'], state['exp_avg_sq']
106-
grad_diff = grad - state['pre_grad']
153+
if 'neg_pre_grad' not in state or group['step'] == 1:
154+
state['neg_pre_grad'] = -p.grad.clone()
107155

108-
exp_avg.lerp_(grad, 1. - beta1) # m_t
109-
exp_avg_diff.lerp_(grad_diff, 1. - beta2) # diff_t (v)
110-
update = grad + beta2 * grad_diff
111-
exp_avg_sq.mul_(beta3).addcmul_(update, update, value=1. - beta3) # n_t
156+
exp_avgs.append(state['exp_avg'])
157+
exp_avg_sqs.append(state['exp_avg_sq'])
158+
exp_avg_diffs.append(state['exp_avg_diff'])
159+
neg_pre_grads.append(state['neg_pre_grad'])
112160

113-
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction3)).add_(group['eps'])
114-
update = (exp_avg / bias_correction1 + beta2 * exp_avg_diff / bias_correction2).div_(denom)
115-
if group['no_prox']:
116-
p.data.mul_(1 - group['lr'] * group['weight_decay'])
117-
p.add_(update, alpha=-group['lr'])
118-
else:
119-
p.add_(update, alpha=-group['lr'])
120-
p.data.div_(1 + group['lr'] * group['weight_decay'])
161+
if not params_with_grad:
162+
continue
121163

122-
state['pre_grad'].copy_(grad)
164+
kwargs = dict(
165+
params=params_with_grad,
166+
grads=grads,
167+
exp_avgs=exp_avgs,
168+
exp_avg_sqs=exp_avg_sqs,
169+
exp_avg_diffs=exp_avg_diffs,
170+
neg_pre_grads=neg_pre_grads,
171+
beta1=beta1,
172+
beta2=beta2,
173+
beta3=beta3,
174+
bias_correction1=bias_correction1,
175+
bias_correction2=bias_correction2,
176+
bias_correction3_sqrt=math.sqrt(bias_correction3),
177+
lr=group['lr'],
178+
weight_decay=group['weight_decay'],
179+
eps=group['eps'],
180+
no_prox=group['no_prox'],
181+
)
182+
183+
if group['foreach']:
184+
_multi_tensor_adan(**kwargs)
185+
else:
186+
_single_tensor_adan(**kwargs)
123187

124188
return loss
189+
190+
191+
def _single_tensor_adan(
192+
params: List[Tensor],
193+
grads: List[Tensor],
194+
exp_avgs: List[Tensor],
195+
exp_avg_sqs: List[Tensor],
196+
exp_avg_diffs: List[Tensor],
197+
neg_pre_grads: List[Tensor],
198+
*,
199+
beta1: float,
200+
beta2: float,
201+
beta3: float,
202+
bias_correction1: float,
203+
bias_correction2: float,
204+
bias_correction3_sqrt: float,
205+
lr: float,
206+
weight_decay: float,
207+
eps: float,
208+
no_prox: bool,
209+
):
210+
for i, param in enumerate(params):
211+
grad = grads[i]
212+
exp_avg = exp_avgs[i]
213+
exp_avg_sq = exp_avg_sqs[i]
214+
exp_avg_diff = exp_avg_diffs[i]
215+
neg_grad_or_diff = neg_pre_grads[i]
216+
217+
# for memory saving, we use `neg_grad_or_diff` to get some temp variable in an inplace way
218+
neg_grad_or_diff.add_(grad)
219+
220+
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) # m_t
221+
exp_avg_diff.mul_(beta2).add_(neg_grad_or_diff, alpha=1 - beta2) # diff_t
222+
223+
neg_grad_or_diff.mul_(beta2).add_(grad)
224+
exp_avg_sq.mul_(beta3).addcmul_(neg_grad_or_diff, neg_grad_or_diff, value=1 - beta3) # n_t
225+
226+
denom = (exp_avg_sq.sqrt() / bias_correction3_sqrt).add_(eps)
227+
step_size_diff = lr * beta2 / bias_correction2
228+
step_size = lr / bias_correction1
229+
230+
if no_prox:
231+
param.mul_(1 - lr * weight_decay)
232+
param.addcdiv_(exp_avg, denom, value=-step_size)
233+
param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff)
234+
else:
235+
param.addcdiv_(exp_avg, denom, value=-step_size)
236+
param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff)
237+
param.div_(1 + lr * weight_decay)
238+
239+
neg_grad_or_diff.zero_().add_(grad, alpha=-1.0)
240+
241+
242+
def _multi_tensor_adan(
243+
params: List[Tensor],
244+
grads: List[Tensor],
245+
exp_avgs: List[Tensor],
246+
exp_avg_sqs: List[Tensor],
247+
exp_avg_diffs: List[Tensor],
248+
neg_pre_grads: List[Tensor],
249+
*,
250+
beta1: float,
251+
beta2: float,
252+
beta3: float,
253+
bias_correction1: float,
254+
bias_correction2: float,
255+
bias_correction3_sqrt: float,
256+
lr: float,
257+
weight_decay: float,
258+
eps: float,
259+
no_prox: bool,
260+
):
261+
if len(params) == 0:
262+
return
263+
264+
# for memory saving, we use `neg_pre_grads` to get some temp variable in a inplace way
265+
torch._foreach_add_(neg_pre_grads, grads)
266+
267+
torch._foreach_mul_(exp_avgs, beta1)
268+
torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) # m_t
269+
270+
torch._foreach_mul_(exp_avg_diffs, beta2)
271+
torch._foreach_add_(exp_avg_diffs, neg_pre_grads, alpha=1 - beta2) # diff_t
272+
273+
torch._foreach_mul_(neg_pre_grads, beta2)
274+
torch._foreach_add_(neg_pre_grads, grads)
275+
torch._foreach_mul_(exp_avg_sqs, beta3)
276+
torch._foreach_addcmul_(exp_avg_sqs, neg_pre_grads, neg_pre_grads, value=1 - beta3) # n_t
277+
278+
denom = torch._foreach_sqrt(exp_avg_sqs)
279+
torch._foreach_div_(denom, bias_correction3_sqrt)
280+
torch._foreach_add_(denom, eps)
281+
282+
step_size_diff = lr * beta2 / bias_correction2
283+
step_size = lr / bias_correction1
284+
285+
if no_prox:
286+
torch._foreach_mul_(params, 1 - lr * weight_decay)
287+
torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size)
288+
torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff)
289+
else:
290+
torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size)
291+
torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff)
292+
torch._foreach_div_(params, 1 + lr * weight_decay)
293+
294+
torch._foreach_zero_(neg_pre_grads)
295+
torch._foreach_add_(neg_pre_grads, grads, alpha=-1.0)

0 commit comments

Comments
 (0)