diff --git a/README.md b/README.md index 42f187cea..dbb302dcc 100644 --- a/README.md +++ b/README.md @@ -27,7 +27,7 @@ This repo contains the content that's used to create the **[Hugging Face course] | [Vietnamese](https://huggingface.co/course/vi/chapter1/1) | [`chapters/vi`](https://github.com/huggingface/course/tree/main/chapters/vi) | [@honghanhh](https://github.com/honghanhh) | | [Chinese (simplified)](https://huggingface.co/course/zh-CN/chapter1/1) | [`chapters/zh-CN`](https://github.com/huggingface/course/tree/main/chapters/zh-CN) | [@zhlhyx](https://github.com/zhlhyx), [petrichor1122](https://github.com/petrichor1122), [@1375626371](https://github.com/1375626371) | | [Chinese (traditional)](https://huggingface.co/course/zh-TW/chapter1/1) (WIP) | [`chapters/zh-TW`](https://github.com/huggingface/course/tree/main/chapters/zh-TW) | [@davidpeng86](https://github.com/davidpeng86) | -| [Romanian](https://huggingface.co/course/rum/chapter1/1) (WIP) | [`chapters/rum`](https://github.com/huggingface/course/tree/main/chapters/rum) | [@Sigmoid](https://github.com/SigmoidAI), [@eduard-balamatiuc](https://github.com/eduard-balamatiuc), [@FriptuLudmila](https://github.com/FriptuLudmila), [@tokyo-s](https://github.com/tokyo-s), [@hbkdesign](https://github.com/hbkdesign), [@grumpycatyo-collab](https://github.com/grumpycatyo-collab) | +| [Romanian](https://huggingface.co/course/rum/chapter1/1) (WIP) | [`chapters/rum`](https://github.com/huggingface/course/tree/main/chapters/rum) | [@Sigmoid](https://github.com/SigmoidAI), [@eduard-balamatiuc](https://github.com/eduard-balamatiuc), [@FriptuLudmila](https://github.com/FriptuLudmila), [@tokyo-s](https://github.com/tokyo-s), [@hbkdesign](https://github.com/hbkdesign), [@grumpycatyo-collab](https://github.com/grumpycatyo-collab), [@Angroys](https://github.com/Angroys) | ### Translating the course into your language diff --git a/chapters/rum/_toctree.yml b/chapters/rum/_toctree.yml index cf1353fe3..7234f6be9 100644 --- a/chapters/rum/_toctree.yml +++ b/chapters/rum/_toctree.yml @@ -27,6 +27,7 @@ title: Quiz de final de capitol quiz: 1 + - title: 2. Folosirea 🤗 Transformers sections: - local: chapter2/1 @@ -48,3 +49,56 @@ - local: chapter2/9 title: Quiz la final de capitol quiz: 2 + +- title: 3. Fine-tuning unui model preantrenat + sections: + - local: chapter3/1 + title: Introducere + - local: chapter3/2 + title: Procesarea datelor + - local: chapter3/3 + title: Fine-tuningul unui model cu Trainer API sau Keras + local_fw: { pt: chapter3/3, tf: chapter3/3_tf } + - local: chapter3/4 + title: Un antrenament complet + - local: chapter3/5 + title: Fine-tuning, verificare! + - local: chapter3/6 + title: Quiz la final de capitol + quiz: 3 + +- title: 4. Partajarea modelelor și a tokenizatoarelor + sections: + - local: chapter4/1 + title: Platforma Hugging Face Hub + - local: chapter4/2 + title: Utilizarea modelelor preantrenate + - local: chapter4/3 + title: Partajarea modelelor preantrenate + - local: chapter4/4 + title: Crearea unui card de model + - local: chapter4/5 + title: Partea 1 este completă + - local: chapter4/6 + title: Quiz la final de capitol + quiz: 4 + +- title: 5. Biblioteca 🤗 Datasets + sections: + - local: chapter5/1 + title: Introducere + - local: chapter5/2 + title: Ce fac dacă dataset-ul meu nu este pe Hub? + - local: chapter5/3 + title: E timpul să tăiem și să analizăm datele + - local: chapter5/4 + title: Big data? 🤗 Datasets vine în ajutor! + - local: chapter5/5 + title: Creează propriul tău dataset + - local: chapter5/6 + title: Căutare semantică cu FAISS + - local: chapter5/7 + title: 🤗 Datasets, verificare! + - local: chapter5/8 + title: Quiz de final de capitol + quiz: 5 diff --git a/chapters/rum/chapter3/1.mdx b/chapters/rum/chapter3/1.mdx new file mode 100644 index 000000000..564d72960 --- /dev/null +++ b/chapters/rum/chapter3/1.mdx @@ -0,0 +1,26 @@ + + +# Introducere[[introducere]] + + + +În [Capitolul 2](/course/chapter2) am explorat modul de utilizare a tokenizerelor și a modelelor preantrenate pentru a efectua predicții. Dar ce se întâmplă dacă doriți să ajustați un model preantrenat pentru propriul dvs. set de date? Iată subiectul acestui capitol! Veți învăța: + +{#if fw === 'pt'} +* Cum să configurați un set mare de date din Hub +* Cum să utilizați API-ul `Trainer` pentru a ajusta un model +* Cum să utilizați o buclă de instruire personalizată +* Cum să profitați de biblioteca Accelerate 🤗 pentru a rula cu ușurință bucla de instruire personalizată pe orice configurație distribuită + +{:else} +* Cum să configurați un set mare de date din Hub +* Cum să utilizați Keras pentru a ajusta un model +* Cum să utilizați Keras pentru a obține predicții +* Cum să utilizați o măsură personalizată + +{/if} + +Pentru a încărca checkpoint-urile antrenate în Hugging Face Hub, veți avea nevoie de un cont huggingface.co: [creați un cont](https://huggingface.co/join) diff --git a/chapters/rum/chapter3/2.mdx b/chapters/rum/chapter3/2.mdx new file mode 100644 index 000000000..e6f391072 --- /dev/null +++ b/chapters/rum/chapter3/2.mdx @@ -0,0 +1,385 @@ + + +# Prelucrarea datelor[[prelucrarea-datelor]] + +{#if fw === 'pt'} + + + +{:else} + + + +{/if} + +{#if fw === 'pt'} +Continuând cu exemplul din [capitolul anterior](/course/chapter2), iată cum am antrena un clasificator de secvențe pe un batch în PyTorch: + +```python +import torch +from transformers import AdamW, AutoTokenizer, AutoModelForSequenceClassification + +# La fel ca înainte +checkpoint = "bert-base-uncased" +tokenizer = AutoTokenizer.from_pretrained(checkpoint) +model = AutoModelForSequenceClassification.from_pretrained(checkpoint) +sequences = [ + "I've been waiting for a HuggingFace course my whole life.", + "This course is amazing!", +] +batch = tokenizer(sequences, padding=True, truncation=True, return_tensors="pt") + +# Ceva nou +batch["labels"] = torch.tensor([1, 1]) + +optimizer = AdamW(model.parameters()) +loss = model(**batch).loss +loss.backward() +optimizer.step() +``` +{:else} +Continuând cu exemplul din [capitolul anterior](/course/chapter2), iată cum am antrena un clasificator de secvențe pe un batch în TensorFlow: + +```python +import tensorflow as tf +import numpy as np +from transformers import AutoTokenizer, TFAutoModelForSequenceClassification + +# La fel ca înainte +checkpoint = "bert-base-uncased" +tokenizer = AutoTokenizer.from_pretrained(checkpoint) +model = TFAutoModelForSequenceClassification.from_pretrained(checkpoint) +sequences = [ + "I've been waiting for a HuggingFace course my whole life.", + "This course is amazing!", +] +batch = dict(tokenizer(sequences, padding=True, truncation=True, return_tensors="tf")) + +# Ceva nou +model.compile(optimizer="adam", loss="sparse_categorical_crossentropy") +labels = tf.convert_to_tensor([1, 1]) +model.train_on_batch(batch, labels) +``` +{/if} + +Desigur, doar antrenarea modelului pe două propoziții nu va da rezultate foarte bune. Pentru a obține rezultate mai bune, va trebui să pregătiți un set de date mai mare. + +În această secțiune vom folosi ca exemplu setul de date MRPC (Microsoft Research Paraphrase Corpus), introdus într-o [lucrare](https://www.aclweb.org/anthology/I05-5002.pdf) de William B. Dolan și Chris Brockett. Setul de date este format din 5 801 perechi de propoziții, cu o etichetă care indică dacă acestea sunt parafrazări sau nu (adică, dacă ambele propoziții înseamnă același lucru). L-am selectat pentru acest capitol deoarece este un set de date mic, astfel încât este ușor de experimentat cu formarea pe acesta. + +### Încărcarea unui set de date din Hub[[încărcarea-unui-set-de-date-din-Hub]] + +{#if fw === 'pt'} + +{:else} + +{/if} + +Hub-ul nu conține doar modele, ci și multe seturi de date în limbi diferite. Puteți naviga printre seturile de date [aici](https://huggingface.co/datasets) și vă recomandăm să încercați să încărcați și să procesați un nou set de date după ce ați parcurs această secțiune (consultați documentația generală [aici](https://huggingface.co/docs/datasets/loading)). Dar, pentru moment, să ne concentrăm asupra setului de date MRPC! Acesta este unul dintre cele 10 seturi de date care compun [GLUE benchmark](https://gluebenchmark.com/), care este un benchmark academic utilizat pentru a măsura performanța modelelor ML în 10 sarcini diferite de clasificare a textului. + +Biblioteca 🤗 Datasets oferă o comandă foarte simplă pentru a descărca și stoca în cache un set de date pe Hub. Putem descărca setul de date MRPC astfel: + + +⚠️ **Atenție** Asigurați-vă că `datasets` este instalat prin rularea `pip install datasets`. Apoi, încărcați setul de date MRPC și tipăriți-l pentru a vedea ce conține. + + +```py +from datasets import load_dataset + +raw_datasets = load_dataset("glue", "mrpc") +raw_datasets +``` + +```python out +DatasetDict({ + train: Dataset({ + features: ['sentence1', 'sentence2', 'label', 'idx'], + num_rows: 3668 + }) + validation: Dataset({ + features: ['sentence1', 'sentence2', 'label', 'idx'], + num_rows: 408 + }) + test: Dataset({ + features: ['sentence1', 'sentence2', 'label', 'idx'], + num_rows: 1725 + }) +}) +``` + +După cum puteți vedea, obținem un obiect `DatasetDict` care conține setul de instruire, setul de validare și setul de testare. Fiecare dintre acestea conține mai multe coloane (`sentence1`, `sentence2`, `label` și `idx`) și un număr de rânduri variabil, care reprezintă numărul de elemente din fiecare set (astfel, există 3.668 de perechi de propoziții în setul de instruire, 408 în setul de validare și 1.725 în setul de testare). + +Această comandă descarcă și pune în cache setul de date, implicit în *~/.cache/huggingface/datasets*. Reamintim din capitolul 2 că puteți personaliza folderul cache prin setarea variabilei de mediu `HF_HOME`. + +Putem accesa fiecare pereche de propoziții din obiectul nostru `raw_datasets` prin indexare, ca într-un dicționar: + +```py +raw_train_dataset = raw_datasets["train"] +raw_train_dataset[0] +``` + +```python out +{'idx': 0, + 'label': 1, + 'sentence1': 'Amrozi accused his brother , whom he called " the witness " , of deliberately distorting his evidence .', + 'sentence2': 'Referring to him as only " the witness " , Amrozi accused his brother of deliberately distorting his evidence .'} +``` + +Putem vedea că etichetele sunt deja numere întregi, deci nu va trebui să efectuăm nicio prelucrare prealabilă. Pentru a ști ce număr întreg corespunde fiecărei etichete, putem inspecta `features` din `raw_train_dataset`. Acest lucru ne va indica tipul fiecărei coloane: + +```py +raw_train_dataset.features +``` + +```python out +{'sentence1': Value(dtype='string', id=None), + 'sentence2': Value(dtype='string', id=None), + 'label': ClassLabel(num_classes=2, names=['not_equivalent', 'equivalent'], names_file=None, id=None), + 'idx': Value(dtype='int32', id=None)} +``` + +În culise, `label` este de tipul `ClassLabel`, iar maparea numerelor întregi și numele etichetei este stocată în folderul *names*. `0` corespunde la `not_equivalent`, iar `1` corespunde la `equivalent`. + + + +✏️ **Încercați!** Uitați-vă la elementul 15 din setul de antrenament și la elementul 87 din setul de validare. Care sunt etichetele lor? + + + +### Preprocesarea unui set de date[[preprocesarea-unui-set-de-date]] + +{#if fw === 'pt'} + +{:else} + +{/if} + +Pentru a preprocesa setul de date, trebuie să convertim textul în numere pe care modelul le înțelege. După cum ați văzut în [capitolul anterior](/course/chapter2), acest lucru se face cu ajutorul unui tokenizer. Putem furniza tokenizatorului o propoziție sau o listă de propoziții, astfel încât putem tokeniza direct primele propoziții și toate propozițiile secundare din fiecare pereche, astfel: + +```py +from transformers import AutoTokenizer + +checkpoint = "bert-base-uncased" +tokenizer = AutoTokenizer.from_pretrained(checkpoint) +tokenized_sentences_1 = tokenizer(raw_datasets["train"]["sentence1"]) +tokenized_sentences_2 = tokenizer(raw_datasets["train"]["sentence2"]) +``` + +Cu toate acestea, nu putem pur și simplu să transmitem două secvențe modelului și să obținem o predicție care să indice dacă cele două propoziții sunt parafraze sau nu. Trebuie să tratăm cele două secvențe ca pe o pereche și să aplicăm preprocesarea corespunzătoare. Din fericire, tokenizatorul poate, de asemenea, să ia o pereche de secvențe și să le pregătească în modul în care se așteaptă modelul nostru BERT: + +```py +inputs = tokenizer("This is the first sentence.", "This is the second one.") +inputs +``` + +```python out +{ + 'input_ids': [101, 2023, 2003, 1996, 2034, 6251, 1012, 102, 2023, 2003, 1996, 2117, 2028, 1012, 102], + 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], + 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +} +``` + +Am discutat despre cheile `input_ids` și `attention_mask` în [Capitolul 2](/course/chapter2), dar am amânat discuția despre `token_type_ids`. În acest exemplu, aceasta este ceea ce îi spune modelului care parte a intrării este prima propoziție și care este a doua propoziție. + + + +✏️ **Încercați!** Luați elementul 15 din setul de antrenament și tokenizați cele două propoziții separat apoi ca pe o pereche. Care este diferența dintre cele două rezultate? + + + +Dacă decodificăm ID-urile din `input_ids` înapoi în cuvinte: + +```py +tokenizer.convert_ids_to_tokens(inputs["input_ids"]) +``` + +Vom obține: + +```python out +['[CLS]', 'this', 'is', 'the', 'first', 'sentence', '.', '[SEP]', 'this', 'is', 'the', 'second', 'one', '.', '[SEP]'] +``` + +Astfel, modelul se așteaptă ca intrările să fie de forma `[CLS] sentence1 [SEP] sentence2 [SEP]` atunci când există două propoziții. Alinierea acestui lucru cu `token_type_ids` ne dă: + +```python out +['[CLS]', 'this', 'is', 'the', 'first', 'sentence', '.', '[SEP]', 'this', 'is', 'the', 'second', 'one', '.', '[SEP]'] +[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1] +``` + +După cum puteți vedea, părțile de intrare corespunzătoare `[CLS] sentence1 [SEP]` au toate un ID de tip token de `0`, în timp ce celelalte părți, corespunzătoare `sentence2 [SEP]`, au toate un ID de tip token de `1`. + +Rețineți că, dacă selectați un checkpoint diferit, nu veți avea neapărat `token_type_ids` în intrările dvs. tokenizate (de exemplu, acestea nu sunt returnate dacă utilizați un model DistilBERT). Acestea sunt returnate numai atunci când modelul va ști ce să facă cu ele, deoarece le-a văzut în timpul preinstruirii sale. + +Aici, BERT este preinstruit cu ID-uri de tip token și, pe lângă obiectivul de modelare a limbajului mascat despre care am vorbit în [[Chapter 1]](/course/chapter1), are un obiectiv suplimentar numit _next sentence prediction_. Obiectivul acestei sarcini este de a modela relația dintre perechile de propoziții. + +În cazul predicției propoziției următoare, modelul primește perechi de propoziții (cu token-uri mascate aleatoriu) și i se cere să prezică dacă a doua propoziție o urmează pe prima. Pentru ca sarcina să nu fie complicată, jumătate din timp propozițiile se succed reciproc în documentul original din care au fost extrase, iar cealaltă jumătate din timp cele două propoziții provin din două documente diferite. + +În general, nu trebuie să vă faceți griji dacă există sau nu `token_type_ids` în intrările dvs. tokenizate: atâta timp cât utilizați același checkpoint pentru tokenizator și model, totul va fi bine, deoarece tokenizatorul știe ce să furnizeze modelului său. + +Acum că am văzut cum tokenizatorul nostru poate trata o pereche de propoziții, îl putem folosi pentru a tokeniza întregul nostru set de date: la fel ca în [previous chapter](/course/chapter2), putem furniza tokenizatorului o listă de perechi de propoziții oferindu-i lista primelor propoziții, apoi lista celor de-a doua propoziții. Acest lucru este, de asemenea, compatibil cu opțiunile de padding și trunchiere pe care le-am văzut în [Chapter 2](/course/chapter2). Așadar, o modalitate de preprocesare a setului de date de instruire este: + +```py +tokenized_dataset = tokenizer( + raw_datasets["train"]["sentence1"], + raw_datasets["train"]["sentence2"], + padding=True, + truncation=True, +) +``` + +Această metodă funcționează corespunzător, dar are dezavantajul de a returna un dicționar (cu cheile noastre, `input_ids`, `attention_mask` și `token_type_ids`, și valori care sunt liste ale listelor). De asemenea, va funcționa numai dacă aveți suficientă memorie RAM pentru a stoca întregul set de date în timpul tokenizării (în timp ce seturile de date din biblioteca 🤗 Datasets sunt fișiere [Apache Arrow](https://arrow.apache.org/) stocate pe disc, deci păstrați încărcate în memorie numai eșantioanele pe care le solicitați). + +Pentru a păstra informațiile sub forma unui set de date, vom utiliza metoda [`Dataset.map()`](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.map). Acest lucru ne permite, de asemenea, o flexibilitate sporită, în cazul în care avem nevoie de mai multe preprocesări decât simpla tokenizare. Metoda `map()` funcționează prin aplicarea unei funcții pe fiecare element al setului de date, deci să definim o funcție care să tokenizeze intrările noastre: + +```py +def tokenize_function(example): + return tokenizer(example["sentence1"], example["sentence2"], truncation=True) +``` + +Această funcție acceptă un dicționar (precum elementele din setul nostru de date) și returnează un nou dicționar cu cheile `input_ids`, `attention_mask` și `token_type_ids`. Rețineți că funcționează și în cazul în care dicționarul `example` conține mai multe eșantioane (fiecare cheie fiind o listă de propoziții), deoarece `tokenizer` funcționează pe liste de perechi de propoziții, așa cum am văzut anterior. Acest lucru ne va permite să folosim opțiunea `batched=True` în apelul nostru la `map`, ceea ce va accelera foarte mult tokenizarea. `tokenizer` este susținut de un tokenizer scris în Rust din biblioteca [🤗 Tokenizers](https://github.com/huggingface/tokenizers). Acest tokenizator poate fi foarte rapid, dar numai dacă îi oferim o mulțime de intrări deodată. + +Rețineți că am omis deocamdată argumentul `padding` în funcția noastră de tokenizare. Acest lucru se datorează faptului că umplerea tuturor eșantioanelor la lungimea maximă nu este eficientă: este mai bine să umplem eșantioanele atunci când construim un batch, deoarece atunci trebuie să umplem doar la lungimea maximă din acel batch, și nu la lungimea maximă din întregul set de date. Acest lucru poate economisi mult timp și putere de procesare atunci când intrările au lungimi variate! + +Iată cum aplicăm funcția de tokenizare la toate seturile noastre de date simultan. Utilizăm `batched=True` în apelul către `map`, astfel încât funcția să fie aplicată la mai multe elemente ale setului nostru de date simultan, și nu la fiecare element în parte. Acest lucru permite o preprocesare mai rapidă. + +```py +tokenized_datasets = raw_datasets.map(tokenize_function, batched=True) +tokenized_datasets +``` + +Modul în care biblioteca 🤗 Datasets aplică această procesare este prin adăugarea de noi câmpuri la seturile de date, câte unul pentru fiecare cheie din dicționarul returnat de funcția de preprocesare: + +```python out +DatasetDict({ + train: Dataset({ + features: ['attention_mask', 'idx', 'input_ids', 'label', 'sentence1', 'sentence2', 'token_type_ids'], + num_rows: 3668 + }) + validation: Dataset({ + features: ['attention_mask', 'idx', 'input_ids', 'label', 'sentence1', 'sentence2', 'token_type_ids'], + num_rows: 408 + }) + test: Dataset({ + features: ['attention_mask', 'idx', 'input_ids', 'label', 'sentence1', 'sentence2', 'token_type_ids'], + num_rows: 1725 + }) +}) +``` + +Puteți utiliza chiar și multiprocesarea atunci când aplicați funcția de preprocesare cu `map()` prin transmiterea unui argument `num_proc`. Nu am făcut acest lucru aici deoarece biblioteca 🤗 Tokenizers utilizează deja mai multe fire pentru a tokeniza mai rapid eșantioanele noastre, dar dacă nu utilizați un tokenizator rapid susținut de această bibliotecă, acest lucru v-ar putea accelera preprocesarea. + +Funcția noastră `tokenize_function` returnează un dicționar cu cheile `input_ids`, `attention_mask` și `token_type_ids`, astfel încât aceste trei câmpuri sunt adăugate la toate diviziunile setului nostru de date. Rețineți că am fi putut, de asemenea, să modificăm câmpurile existente dacă funcția noastră de preprocesare a returnat o nouă valoare pentru o cheie existentă în setul de date căruia i-am aplicat funcția `map()`. + +Ultimul lucru pe care va trebui să îl facem este să umplem toate exemplele la lungimea celui mai lung element atunci când grupăm elementele împreună - o tehnică la care ne referim ca *umplere dinamică*. + +### Umplere dinamică[[umplere-dinamică]] + + + +{#if fw === 'pt'} +Funcția care este responsabilă de combinarea eșantioanelor în cadrul unui batch se numește *funcție de colaționare*. Este un argument pe care îl puteți trece atunci când construiți un `DataLoader`, implicit fiind o funcție care va converti eșantioanele în tensori PyTorch și le va concatena (recursiv dacă elementele dvs. sunt liste, tupluri sau dicționare). În cazul nostru, va fi de asemenea să aplicați umplutură pentru a avea toate intrările de aceeași lungime. Clasa `DataCollatorWithPadding` face exact acest lucru (și un pic mai mult, după cum am văzut anterior). Ia un tokenizer atunci când este instanțiat (pentru a știi ce token de completare să folosească și dacă modelul se așteaptă la padding în stânga sau în dreapta) și va face tot ce aveți nevoie. Umplerea dinamică poate fi aplicată în funcție de necesități la fiecare batch și pentru a evita să avem intrări prea lungi cu o mulțime de umpluturi. Acest lucru va accelera antrenamentul destul de mult, dar rețineți că, dacă vă antrenați pe o TPU, acest lucru poate cauza probleme - TPU-urile preferă forme fixe, chiar și atunci când ar putea necesita padding suplimentar. + +{:else} + +Funcția care este responsabilă de reunirea eșantioanelor în cadrul unui batch se numește *funcție de colaționare*. Funcția de colaționare implicită este o funcție care va converti eșantioanele în tf.Tensor și le va concatena (recursiv dacă elementele dvs. sunt liste, tuples sau dicționare). În cazul nostru, va fi de asemenea să aplicați umplutură pentru a avea toate intrările de aceeași lungime. Clasa `DataCollatorWithPadding` face exact acest lucru (și un pic mai mult, după cum am văzut anterior). Ia un tokenizer atunci când este instanțiat (pentru a știi ce token de completare să folosească și dacă modelul se așteaptă la padding în stânga sau în dreapta) și va face tot ce aveți nevoie. Umplerea dinamică poate fi aplicată în funcție de necesități la fiecare batch și pentru a evita să avem intrări prea lungi cu o mulțime de umpluturi. Acest lucru va accelera antrenamentul destul de mult, dar rețineți că, dacă vă antrenați pe o TPU, acest lucru poate cauza probleme - TPU-urile preferă forme fixe, chiar și atunci când ar putea necesita padding suplimentar. + +{/if} + +Pentru a face acest lucru în practică, trebuie să definim o funcție de colaționare care va aplica cantitatea corectă de umplutură elementelor din setul de date pe care dorim să le grupăm. Din fericire, biblioteca 🤗 Transformers ne oferă o astfel de funcție prin `DataCollatorWithPadding`. Aceasta preia un tokenizer atunci când o instanțiați (pentru a știi ce token de umplutură să utilizați și dacă modelul se așteaptă ca umplutura să fie la stânga sau la dreapta intrărilor) și va face tot ceea ce aveți nevoie: + +{#if fw === 'pt'} +```py +from transformers import DataCollatorWithPadding + +data_collator = DataCollatorWithPadding(tokenizer=tokenizer) +``` +{:else} +```py +from transformers import DataCollatorWithPadding + +data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="tf") +``` +{/if} + +Pentru a testa această nouă opțiune, să luăm câteva eșantioane din setul nostru de formare pe care dorim să le grupăm. Aici, eliminăm coloanele `idx`, `sentence1` și `sentence2` deoarece nu vor fi necesare și conțin șiruri de caractere (și nu putem crea tensori cu șiruri de caractere) și aruncăm o privire la lungimile fiecărei intrări din batch: + +```py +samples = tokenized_datasets["train"][:8] +samples = {k: v for k, v in samples.items() if k not in ["idx", "sentence1", "sentence2"]} +[len(x) for x in samples["input_ids"]] +``` + +```python out +[50, 59, 47, 67, 59, 50, 62, 32] +``` + +Nici o surpriză, obținem eșantioane de diferite lungimi, de la 32 la 67. Umplerea dinamică înseamnă că toate eșantioanele din acest batch ar trebui să fie umplute la o lungime de 67, lungimea maximă din cadrul batch-ului. Fără umplutură dinamică, toate eșantioanele ar trebui să fie umplute la lungimea maximă din întregul set de date sau la lungimea maximă pe care modelul o poate accepta. Să verificăm de două ori dacă `data_collator` completează dinamic batch-ul în mod corespunzător: + +```py +batch = data_collator(samples) +{k: v.shape for k, v in batch.items()} +``` + +{#if fw === 'tf'} + +```python out +{'attention_mask': TensorShape([8, 67]), + 'input_ids': TensorShape([8, 67]), + 'token_type_ids': TensorShape([8, 67]), + 'labels': TensorShape([8])} +``` + +{:else} + +```python out +{'attention_mask': torch.Size([8, 67]), + 'input_ids': torch.Size([8, 67]), + 'token_type_ids': torch.Size([8, 67]), + 'labels': torch.Size([8])} +``` + +Perfect! Acum că am trecut de la text brut la batch-uri cu care modelul nostru se poate descurca, suntem gata să îl ajustăm! + +{/if} + + + +✏️ **Încearcați!** Replicați preprocesarea pe setul de date GLUE SST-2. Acesta este puțin diferit, deoarece este compus din propoziții simple în loc de perechi, dar restul lucrurilor pe care le-am făcut ar trebui să fie la fel. Pentru o provocare mai dificilă, încercați să scrieți o funcție de preprocesare care să funcționeze pe oricare dintre sarcinile GLUE. + + + +{#if fw === 'tf'} + +Acum că avem setul nostru de date și un compilator de date, trebuie să le punem împreună. Am putea încărca manual batch-uri și să le asamblăm, dar este mult de lucru și probabil nici nu este foarte eficient. În schimb, există o metodă simplă care oferă o soluție performantă la această problemă: `to_tf_dataset()`. Aceasta va împacheta un `tf.data.Dataset` cu funcția de colaționare încorporată. Dacă utilizați `DataCollatorWithPadding`, acest lucru nu va fi o problemă deoarece ea funcționează cu dicționare, liste și tensori NumPy, precum și cu tensori TensorFlow! + +```py +tf_train_dataset = tokenized_datasets["train"].to_tf_dataset( + columns=["attention_mask", "input_ids", "token_type_ids"], + label_cols=["labels"], + shuffle=True, + collate_fn=data_collator, + batch_size=8, +) + +tf_validation_dataset = tokenized_datasets["validation"].to_tf_dataset( + columns=["attention_mask", "input_ids", "token_type_ids"], + label_cols=["labels"], + shuffle=False, + collate_fn=data_collator, + batch_size=8, +) +``` + +Și asta este tot! Putem folosi aceste seturi de date în cursul următor, unde instruirea va fi extrem de simplă după toată munca grea de preprocesare a datelor. + +{/if} diff --git a/chapters/rum/chapter3/3.mdx b/chapters/rum/chapter3/3.mdx new file mode 100644 index 000000000..5da0fc0dd --- /dev/null +++ b/chapters/rum/chapter3/3.mdx @@ -0,0 +1,171 @@ + + +# Ajustarea unui model folosind Trainer API[[ajustarea-unui-model-folosind-trainer-api]] + + + + + +🤗 Transformers oferă o clasă `Trainer` pentru a vă ajuta să reglați mai bine oricare dintre modelele preinstruite pe care le oferă pe setul dvs. de date. După ce ați făcut toată munca de preprocesare a datelor din ultima secțiune, vă mai rămân doar câțiva pași pentru a defini clasa `Trainer`. Cea mai dificilă parte va fi probabil pregătirea mediului pentru a rula `Trainer.train()`, deoarece acesta va rula foarte lent pe un CPU. Dacă nu aveți un GPU configurat, puteți obține acces gratuit la GPU-uri sau TPU-uri pe [Google Colab] (https://colab.research.google.com/). + +Exemplele de cod de mai jos presupun că ați executat deja exemplele din secțiunea anterioară. Iată un scurt rezumat care recapitulează ceea ce aveți nevoie: + +```py +from datasets import load_dataset +from transformers import AutoTokenizer, DataCollatorWithPadding + +raw_datasets = load_dataset("glue", "mrpc") +checkpoint = "bert-base-uncased" +tokenizer = AutoTokenizer.from_pretrained(checkpoint) + + +def tokenize_function(example): + return tokenizer(example["sentence1"], example["sentence2"], truncation=True) + + +tokenized_datasets = raw_datasets.map(tokenize_function, batched=True) +data_collator = DataCollatorWithPadding(tokenizer=tokenizer) +``` + +### Antrenarea[[antrenarea]] + +Primul pas înainte de a ne defini modelul `Trainer` este să definim o clasă `TrainingArguments` care va conține toți hiperparametrii pe care `Trainer` îi va utiliza pentru formare și evaluare. Singurul argument pe care trebuie să îl furnizați este un folder în care va fi salvat modelul antrenat, precum și punctele de control de pe parcurs. Pentru tot restul, puteți lăsa valorile implicite, care ar trebui să funcționeze destul de bine pentru o ajustare de bază. + +```py +from transformers import TrainingArguments + +training_args = TrainingArguments("test-trainer") +``` + + + +💡 Dacă doriți să încărcați automat modelul în Hub în timpul instruirii, treceți `push_to_hub=True` în `TrainingArguments`. Vom afla mai multe despre acest lucru în [Capitolul 4](/course/chapter4/3). + + + +Al doilea pas este să ne definim modelul. Ca și în [capitolul anterior](/course/chapter2), vom folosi clasa `AutoModelForSequenceClassification`, cu două etichete: + +```py +from transformers import AutoModelForSequenceClassification + +model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) +``` + +Veți observa că, spre deosebire de [Capitolul 2](/course/chapter2), veți primi un avertisment după instanțierea acestui model preinstruit. Acest lucru se datorează faptului că BERT nu a fost instruit în prealabil cu privire la clasificarea perechilor de propoziții, astfel încât head-ul modelului instruit în prealabil a fost eliminat și a fost adăugat în schimb un nou head adecvat pentru clasificarea secvențelor. Avertizările indică faptul că unele ponderi nu au fost utilizate (cele corespunzătoare head-ului de preformare eliminat) și că altele au fost inițializate aleatoriu (cele pentru noul head). În încheiere, vă încurajează să antrenați modelul, ceea ce vom face acum. + +Odată ce avem modelul nostru, putem defini un `Trainer` transmițându-i toate obiectele construite până acum - `modelul`, `training_args`, seturile de date de formare și validare, `data_collator` și `tokenizer`: + +```py +from transformers import Trainer + +trainer = Trainer( + model, + training_args, + train_dataset=tokenized_datasets["train"], + eval_dataset=tokenized_datasets["validation"], + data_collator=data_collator, + tokenizer=tokenizer, +) +``` + +Rețineți că atunci când treceți `tokenizer` așa cum am făcut aici, `data_collator` implicit folosit de `Trainer` va fi un `DataCollatorWithPadding` așa cum a fost definit anterior, deci puteți sări peste linia `data_collator=data_collator` în acest apel. Era totuși important să vă arăt această parte a procesării în secțiunea 2! + +Pentru a regla cu precizie modelul pe setul nostru de date, trebuie doar să apelăm metoda `train()` a `Trainer`: + +```py +trainer.train() +``` + +Acest lucru va începe reglarea fină (care ar trebui să dureze câteva minute pe un GPU) și va raporta valoarea pierderii de formare la fiecare 500 de pași. Cu toate acestea, nu vă va spune cât de bine (sau rău) funcționează modelul dumneavoastră. Acest lucru se datorează faptului că: + +1. Nu am precizat că `Trainer` trebuie să evalueze în timpul antrenamentului prin setarea `evaluation_strategy` la `„steps”` (evaluare la fiecare `eval_steps`) sau `„epoch”` (evaluare la sfârșitul fiecărei epoch). +2. Nu am furnizat pentru `Trainer` o funcție `compute_metrics()` pentru a calcula o valoare metrică în timpul evaluării (altfel evaluarea ar fi afișat doar pierderea, care nu este un număr foarte intuitiv). + +### Evaluarea[[evaluarea]] + +Să vedem cum putem construi o funcție utilă `compute_metrics()` și să o folosim data viitoare când ne antrenăm. Funcția trebuie să preia un obiect `EvalPrediction` (care este un tuple numit cu un câmp `predictions` și un câmp `label_ids`) și va returna un dicționar care mapează șiruri de caractere în valori float. Pentru a obține unele predicții de la modelul nostru, putem utiliza comanda `Trainer.predict()`: + +```py +predictions = trainer.predict(tokenized_datasets["validation"]) +print(predictions.predictions.shape, predictions.label_ids.shape) +``` + +```python out +(408, 2) (408,) +``` + +Rezultatul metodei `predict()` este un alt tuple numit cu trei câmpuri: `predictions`, `label_ids` și `metrics`. Câmpul `metrics` va conține doar pierderea pe setul de date transmis, precum și unele valori metrice de timp (cât timp a durat predicția, în total și în medie). După ce vom finaliza funcția `compute_metrics()` și o vom transmite către `Trainer`, acest câmp va conține și metrica returnată de `compute_metrics()`. + +După cum puteți vedea, `predictions` este un array bidimensional cu forma 408 x 2 (408 fiind numărul de elemente din setul de date pe care l-am folosit). Acestea sunt logits pentru fiecare element al setului de date pe care l-am transmis la `predict()` (după cum ați văzut în [capitolul anterior](/course/chapter2), toate modelele Transformer returnează logits). Pentru a le transforma în predicții pe care le putem compara cu etichetele noastre, trebuie să luăm indicele cu valoarea maximă pe a doua axă: + +```py +import numpy as np + +preds = np.argmax(predictions.predictions, axis=-1) +``` + +Acum putem compara `preds` cu etichetele. Pentru a construi funcția noastră `compute_metric()`, ne vom baza pe valorile metrice din biblioteca 🤗 [Evaluate](https://github.com/huggingface/evaluate/). Putem încărca valorile metrice asociate cu setul de date MRPC la fel de ușor cum am încărcat setul de date, de data aceasta cu funcția `evaluate.load()`. Obiectul returnat are o metodă `compute()` pe care o putem utiliza pentru a efectua calculul metric: + +```py +import evaluate + +metric = evaluate.load("glue", "mrpc") +metric.compute(predictions=preds, references=predictions.label_ids) +``` + +```python out +{'accuracy': 0.8578431372549019, 'f1': 0.8996539792387542} +``` + +Rezultatele exacte pe care le obțineți pot varia, deoarece inițializarea aleatorie a head-ului modelului poate schimba parametrii obținuți. Aici, putem vedea că modelul nostru are o precizie de 85,78% pe setul de validare și un scor F1 de 89,97. Acestea sunt cele două valori metrice utilizate pentru a evalua rezultatele pe setul de date MRPC pentru criteriul de referință GLUE. Tabelul din [lucrarea BERT] (https://arxiv.org/pdf/1810.04805.pdf) a raportat un scor F1 de 88,9 pentru modelul de bază. Acesta a fost modelul „fără casare”, în timp ce noi folosim în prezent modelul „cu casare”, ceea ce explică rezultatul mai bun. + +Adunând totul, obținem funcția noastră `compute_metrics()`: + +```py +def compute_metrics(eval_preds): + metric = evaluate.load("glue", "mrpc") + logits, labels = eval_preds + predictions = np.argmax(logits, axis=-1) + return metric.compute(predictions=predictions, references=labels) +``` + +Și pentru a vedea cum se utilizează în practică pentru a raporta datele metrice la sfârșitul fiecărei perioade, iată cum definim un nou `Trainer` cu această funcție `compute_metrics()`: + +```py +training_args = TrainingArguments("test-trainer", evaluation_strategy="epoch") +model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) + +trainer = Trainer( + model, + training_args, + train_dataset=tokenized_datasets["train"], + eval_dataset=tokenized_datasets["validation"], + data_collator=data_collator, + tokenizer=tokenizer, + compute_metrics=compute_metrics, +) +``` + +Rețineți că creăm un nou `TrainingArguments` cu `evaluation_strategy` setat la `„epoch”` și un nou model - în caz contrar, am continua doar instruirea modelului pe care l-am instruit deja. Pentru a lansa o nouă rulare de formare, executăm: + +```py +trainer.train() +``` + +De data aceasta, acesta va raporta pierderea de validare și metrica la sfârșitul fiecărei perioade, pe lângă valoarea pierderii de formare. Din nou, scorul exact de acuratețe/F1 pe care îl veți obține ar putea fi puțin diferit de ceea ce am găsit noi, din cauza inițializării aleatorii a modelului, dar ar trebui să fie în aceeași zonă. + +Modelul `Trainer` va funcționa din start pe mai multe GPU sau TPU și oferă o mulțime de opțiuni, cum ar fi formarea cu precizie mixtă (utilizați `fp16 = True` în argumentele de formare). Vom trece în revistă toate funcțiile pe care le suportă în capitolul 10. + +Aceasta încheie introducerea la reglarea fină cu ajutorul API-ului `Trainer`. În [Capitolul 7](/course/chapter7) va fi prezentat un exemplu de efectuare a acestei operații pentru cele mai comune sarcini NLP, dar pentru moment să analizăm cum se poate face același lucru în PyTorch pur. + + + +✏️ **Încercați!** Ajustați un model pe setul de date GLUE SST-2, folosind procesarea datelor efectuată în secțiunea 2. + + + diff --git a/chapters/rum/chapter3/3_tf.mdx b/chapters/rum/chapter3/3_tf.mdx new file mode 100644 index 000000000..73d2fa64b --- /dev/null +++ b/chapters/rum/chapter3/3_tf.mdx @@ -0,0 +1,197 @@ + + +# Ajustarea unui model cu Keras[[ajustarea-unui-model-cu-keras]] + + + +După ce ați efectuat toate lucrările de preprocesare a datelor din ultima secțiune, mai aveți doar câțiva pași de făcut pentru a antrena modelul. Rețineți, totuși, că comanda `model.fit()` va rula foarte lent pe un CPU. Dacă nu aveți un GPU configurat, puteți obține acces gratuit la GPU sau TPU pe [Google Colab](https://colab.research.google.com/). + +Exemplele de cod de mai jos presupun că ați executat deja exemplele din secțiunea anterioară. Iată un scurt rezumat care recapitulează ceea ce aveți nevoie: + +```py +from datasets import load_dataset +from transformers import AutoTokenizer, DataCollatorWithPadding +import numpy as np + +raw_datasets = load_dataset("glue", "mrpc") +checkpoint = "bert-base-uncased" +tokenizer = AutoTokenizer.from_pretrained(checkpoint) + + +def tokenize_function(example): + return tokenizer(example["sentence1"], example["sentence2"], truncation=True) + + +tokenized_datasets = raw_datasets.map(tokenize_function, batched=True) + +data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="tf") + +tf_train_dataset = tokenized_datasets["train"].to_tf_dataset( + columns=["attention_mask", "input_ids", "token_type_ids"], + label_cols=["labels"], + shuffle=True, + collate_fn=data_collator, + batch_size=8, +) + +tf_validation_dataset = tokenized_datasets["validation"].to_tf_dataset( + columns=["attention_mask", "input_ids", "token_type_ids"], + label_cols=["labels"], + shuffle=False, + collate_fn=data_collator, + batch_size=8, +) +``` + +### Antrenarea[[antrenarea]] + +Modelele TensorFlow importate din 🤗 Transformers sunt deja modele Keras. În cele ce urmează găsiți o scurtă introducere în Keras. + + + +Aceasta înseamnă că, odată ce avem datele noastre, este nevoie de foarte puțină muncă pentru a începe antrenarea pe baza acestora. + + + +Ca și în [capitolul anterior](/course/chapter2), vom folosi clasa `TFAutoModelForSequenceClassification`, cu două etichete: + +```py +from transformers import TFAutoModelForSequenceClassification + +model = TFAutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) +``` + +Veți observa că, spre deosebire de [Capitolul 2](/course/chapter2), veți primi un avertisment după instanțierea acestui model preinstruit. Acest lucru se datorează faptului că BERT nu a fost preinstruit pentru clasificarea perechilor de propoziții, astfel încât head-ul modelului preinstruit a fost eliminat și a fost introdus în schimb un nou head adecvat pentru clasificarea secvențelor. Avertizările indică faptul că unele ponderi nu au fost utilizate (cele corespunzătoare head-ului de preformare eliminat) și că altele au fost inițializate aleatoriu (cele pentru noul head). În încheiere, vă încurajează să antrenați modelul, ceea ce vom face acum. + +Pentru a realiza fine-tuning-ul modelului pe setul nostru de date, trebuie doar să `compilăm()` modelul nostru și apoi să transmitem datele noastre metodei `fit()`. Aceasta va începe procesul de `fine-tuning` (care ar trebui să dureze câteva minute pe un GPU) și va raporta pierderea de formare pe parcurs, plus pierderea de validare la sfârșitul fiecărei epoci. + + + +Rețineți că modelele 🤗 Transformers au o abilitate specială pe care majoritatea modelelor Keras nu o au - ele pot utiliza automat o valoare adecvată a pierderii pe care o calculează intern. Ele vor utiliza această valoare în mod implicit dacă nu setați un argument de pierdere în `compile()`. Rețineți că pentru a utiliza valoarea internă a pierderii va trebui să transmiteți etichetele ca parte a datelor de intrare, nu ca etichetă separată, care este modul normal de utilizare a etichetelor cu modelele Keras. Veți vedea exemple în acest sens în partea 2 a cursului, unde definirea funcției de pierdere corecte poate fi complicată. Cu toate acestea, pentru clasificarea secvențelor, o funcție de pierdere Keras standard funcționează bine, așa că aceasta este cea pe care o vom utiliza aici. + + + +```py +from tensorflow.keras.losses import SparseCategoricalCrossentropy + +model.compile( + optimizer="adam", + loss=SparseCategoricalCrossentropy(from_logits=True), + metrics=["accuracy"], +) +model.fit( + tf_train_dataset, + validation_data=tf_validation_dataset, +) +``` + + + +Remarcați o problemă foarte des întâlnită aici - *puteți* doar să transmiteți numele pierderii ca șir de caractere către Keras, dar în mod implicit Keras va presupune că ați aplicat deja un softmax rezultatelor dvs. Cu toate acestea, multe modele produc valorile chiar înainte de aplicarea softmax, care sunt cunoscute și sub numele de *logits*. Trebuie să spunem funcției de pierdere că asta face modelul nostru, iar singura modalitate de a face acest lucru este să o apelăm direct, mai degrabă decât prin nume cu un șir. + + + + +### Îmbunătățirea performanțelor de instruire[[Îmbunătățirea-performanțelor-de-instruire]] + + + +Dacă încercați codul de mai sus, acesta rulează cu siguranță, dar veți constata că valoarea pierderii scade doar lent sau sporadic. Cauza principală +este *rata de învățare*. Ca și în cazul pierderii, atunci când îi transmitem lui Keras numele unui optimizator ca șir de caractere, Keras inițializează +optimizatorul respectiv cu valori implicite pentru toți parametrii, inclusiv rata de învățare. Totuși, din experiența îndelungată, știm +că modelele transformatoare beneficiază de o rată de învățare mult mai mică decât cea implicită pentru Adam, care este 1e-3, scrisă și +ca 10 la puterea -3, sau 0,001. 5e-5 (0,00005), care este de aproximativ douăzeci de ori mai mică, este un punct de plecare mult mai bun. + +În plus față de scăderea ratei de învățare, avem un al doilea as în mânecă: putem reduce încet rata de învățare +pe parcursul instruirii. În literatura de specialitate, veți vedea uneori că acest lucru este denumit *decădere* sau *analizare* +a ratei de învățare. În Keras, cel mai bun mod de a face acest lucru este de a utiliza un *programator al ratei de învățare*. Un program bun de utilizat este +`PolynomialDecay` - în ciuda numelui, cu setările implicite, acesta pur și simplu scade liniar rata de învățare de la valoarea inițială +până la valoarea finală pe parcursul instruirii, ceea ce este exact ceea ce ne dorim. Pentru a utiliza corect un programator, +totuși, trebuie să îi spunem cât va dura antrenamentul. Calculăm acest lucru ca `num_train_steps` mai jos. + +```py +from tensorflow.keras.optimizers.schedules import PolynomialDecay + +batch_size = 8 +num_epochs = 3 +# Numărul etapelor de formare este numărul de eșantioane din setul de date, împărțit la dimensiunea batch-ului, apoi înmulțit +# cu numărul total de epoci. Rețineți că setul de date tf_train_dataset de aici este un set de date tf.data.Dataset în batch-uri, +num_train_steps = len(tf_train_dataset) * num_epochs +lr_scheduler = PolynomialDecay( + initial_learning_rate=5e-5, end_learning_rate=0.0, decay_steps=num_train_steps +) +from tensorflow.keras.optimizers import Adam + +opt = Adam(learning_rate=lr_scheduler) +``` + + + +Biblioteca Transformers 🤗 are, de asemenea, o funcție `create_optimizer()` care va crea un optimizator `AdamW` cu rata de învățare în scădere. Aceasta este o scurtătură convenabilă pe care o veți vedea în detaliu în secțiunile viitoare ale cursului. + + + +Acum avem optimizatorul nostru complet nou și putem încerca să ne antrenăm cu el. În primul rând, să reîncărcăm modelul, pentru a reseta modificările aduse ponderilor în urma instruirii pe care tocmai am efectuat-o, iar apoi îl putem compila cu noul optimizator: + +```py +import tensorflow as tf + +model = TFAutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) +loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) +model.compile(optimizer=opt, loss=loss, metrics=["accuracy"]) +``` + +Acum, ne potrivim din nou: + +```py +model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3) +``` + + + +💡 Dacă doriți să încărcați automat modelul dvs. în Hub în timpul instruirii, puteți trece un `PushToHubCallback` în metoda `model.fit()`. Vom afla mai multe despre acest lucru în [Capitolul 4](/course/chapter4/3) + + + +### Predicțiile modelului[[predicțiile-modelului]] + + + + +Este foarte interesant să ne antrenăm și să vedem cum scade valoarea pierderii, dar ce se întâmplă dacă dorim să obținem rezultate de la modelul antrenat, fie pentru a calcula anumiți parametri, fie pentru a utiliza modelul în producție? Pentru a face acest lucru, putem folosi metoda `predict()`. Aceasta va returna *logit-urile* din rezultatele modelului, unul pentru fiecare clasă. + +```py +preds = model.predict(tf_validation_dataset)["logits"] +``` + +Putem converti aceste logiți în predicții de clasă ale modelului folosind `argmax` pentru a găsi cel mai mare logit, care corespunde celei mai probabile clase: + +```py +class_preds = np.argmax(preds, axis=1) +print(preds.shape, class_preds.shape) +``` + +```python out +(408, 2) (408,) +``` +Acum, să folosim `preds` pentru a calcula niște indicatori! Putem încărca indicatorii de măsurare asociați cu setul de date MRPC la fel de ușor cum am încărcat setul de date, de data aceasta cu funcția `evaluate.load()`. Obiectul returnat are o metodă `compute()` pe care o putem folosi pentru a face calculul metric: + +```py +import evaluate + +metric = evaluate.load("glue", "mrpc") +metric.compute(predictions=class_preds, references=raw_datasets["validation"]["label"]) +``` + +```python out +{'accuracy': 0.8578431372549019, 'f1': 0.8996539792387542} +``` + +Rezultatele exacte pe care le obțineți pot varia, deoarece inițializarea aleatorie a head-ului modelului poate schimba parametrii obținuți. Aici, putem vedea că modelul nostru are o precizie de 85,78% pe setul de validare și un scor F1 de 89,97. Acestea sunt cele două metrici utilizate pentru a evalua rezultatele pe setul de date MRPC pentru criteriul de referință GLUE. Tabelul din [lucrarea BERT] (https://arxiv.org/pdf/1810.04805.pdf) a raportat un scor F1 de 88,9 pentru modelul de bază. Acesta a fost modelul `uncased`, în timp ce noi folosim în prezent modelul `cased`, ceea ce explică rezultatul mai bun. + +Aceasta încheie introducerea la ajustarea fină utilizând API-ul Keras. În [Capitolul 7](/course/chapter7) va fi prezentat un exemplu de efectuare a acestui lucru pentru cele mai comune sarcini NLP. Dacă doriți să vă perfecționați abilitățile cu API-ul Keras, încercați să reglați un model pe setul de date GLUE SST-2, utilizând prelucrarea datelor pe care ați făcut-o în secțiunea 2. diff --git a/chapters/rum/chapter3/4.mdx b/chapters/rum/chapter3/4.mdx new file mode 100644 index 000000000..797e7d9c9 --- /dev/null +++ b/chapters/rum/chapter3/4.mdx @@ -0,0 +1,359 @@ +# O instruire completă[[o-instruire-completă]] + + + + + +Acum vom vedea cum să obținem aceleași rezultate ca în secțiunea anterioară, dar fără să folosim clasa `Trainer`. Din nou, presupunem că ați parcurs deja procesarea datelor din secțiunea 2. Iată un scurt rezumat al tot ceea ce veți avea nevoie: + +```py +from datasets import load_dataset +from transformers import AutoTokenizer, DataCollatorWithPadding + +raw_datasets = load_dataset("glue", "mrpc") +checkpoint = "bert-base-uncased" +tokenizer = AutoTokenizer.from_pretrained(checkpoint) + + +def tokenize_function(example): + return tokenizer(example["sentence1"], example["sentence2"], truncation=True) + + +tokenized_datasets = raw_datasets.map(tokenize_function, batched=True) +data_collator = DataCollatorWithPadding(tokenizer=tokenizer) +``` + +### Pregătirea pentru antrenament[[pregătirea-pentru-antrenament]] + +Înainte de a scrie efectiv bucla de antrenament, va trebui să definim câteva obiecte. Primele sunt încărcătoarele de date (dataloaders) pe care le vom folosi pentru a itera pe batch-uri. Dar, înainte de a putea defini acele dataloaders, trebuie să aplicăm un pic de postprocesare dataset-urilor noastre `tokenized_datasets`, pentru a ne ocupa de câteva lucruri pe care `Trainer` le făcea automat pentru noi. Mai exact, trebuie să: + +- Eliminăm coloanele care corespund valorilor pe care modelul nu le așteaptă (cum ar fi coloanele `sentence1` și `sentence2`). +- Redenumim coloana `label` în `labels` (pentru că modelul se așteaptă ca argumentul să se numească `labels`). +- Setăm formatul dataset-urilor astfel încât să returneze tensori PyTorch în loc de liste. + +`tokenized_datasets` are câte o metodă pentru fiecare dintre acești pași: + +```py +tokenized_datasets = tokenized_datasets.remove_columns(["sentence1", "sentence2", "idx"]) +tokenized_datasets = tokenized_datasets.rename_column("label", "labels") +tokenized_datasets.set_format("torch") +tokenized_datasets["train"].column_names +``` + +Putem apoi să verificăm că rezultatul are doar coloanele pe care modelul le va accepta: + +```python +["attention_mask", "input_ids", "labels", "token_type_ids"] +``` + +Acum, după ce am terminat acest pas, putem defini foarte ușor dataloader-urile noastre: + +```py +from torch.utils.data import DataLoader + +train_dataloader = DataLoader( + tokenized_datasets["train"], shuffle=True, batch_size=8, collate_fn=data_collator +) +eval_dataloader = DataLoader( + tokenized_datasets["validation"], batch_size=8, collate_fn=data_collator +) +``` + +Pentru a verifica rapid că nu există nicio eroare în procesarea datelor, putem inspecta un batch astfel: + +```py +for batch in train_dataloader: + break +{k: v.shape for k, v in batch.items()} +``` + +```python out +{'attention_mask': torch.Size([8, 65]), + 'input_ids': torch.Size([8, 65]), + 'labels': torch.Size([8]), + 'token_type_ids': torch.Size([8, 65])} +``` + +Observați că formele reale ar putea fi ușor diferite pentru voi, pentru că am setat `shuffle=True` în dataloader-ul nostru de antrenament și pentru că împachetăm (padding) la lungimea maximă în interiorul batch-ului. + +Acum că am terminat complet procesarea datelor (un obiectiv satisfăcător, dar uneori greu de atins pentru orice practician ML), să trecem la model. Îl instanțiem exact ca în secțiunea anterioară: + +```py +from transformers import AutoModelForSequenceClassification + +model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) +``` + +Pentru a ne asigura că totul va decurge fără probleme în timpul antrenamentului, trecem batch-ul nostru prin model: + +```py +outputs = model(**batch) +print(outputs.loss, outputs.logits.shape) +``` + +```python out +tensor(0.5441, grad_fn=) torch.Size([8, 2]) +``` + +Toate modelele 🤗 Transformers vor returna pierderea (loss) când `labels` sunt furnizate, și, de asemenea, obținem logits (două pentru fiecare intrare în batch, deci un tensor de mărimea 8 x 2). + +Suntem aproape gata să scriem bucla de antrenament! Ne mai lipsesc două lucruri: un optimizer și un scheduler pentru rata de învățare. Pentru că încercăm să reproducem ceea ce făcea `Trainer`, vom folosi aceleași valori implicite. Optimizer-ul folosit de `Trainer` este `AdamW`, care este același cu Adam, dar cu o abordare particulară pentru regularizarea weight decay (vedeți lucrarea ["Decoupled Weight Decay Regularization"](https://arxiv.org/abs/1711.05101) de Ilya Loshchilov și Frank Hutter): + +```py +from transformers import AdamW + +optimizer = AdamW(model.parameters(), lr=5e-5) +``` + +În final, scheduler-ul pentru rata de învățare folosit implicit este doar o descreștere liniară de la valoarea maximă (5e-5) la 0. Pentru a-l defini corect, trebuie să știm numărul de pași de antrenament pe care îi vom face, care este numărul de epoci dorit înmulțit cu numărul de batch-uri de antrenament (care este lungimea dataloader-ului nostru de antrenament). `Trainer` folosește trei epoci implicit, așa că vom urma acest exemplu: + +```py +from transformers import get_scheduler + +num_epochs = 3 +num_training_steps = num_epochs * len(train_dataloader) +lr_scheduler = get_scheduler( + "linear", + optimizer=optimizer, + num_warmup_steps=0, + num_training_steps=num_training_steps, +) +print(num_training_steps) +``` + +```python out +1377 +``` + +### Bucla de antrenament[[bucla-de-antrenament]] + +Încă un lucru: vom dori să folosim GPU-ul dacă avem acces la unul (pe un CPU, antrenamentul poate dura câteva ore în loc de câteva minute). Pentru asta, definim un `device` pe care vom pune modelul și batch-urile noastre: + +```py +import torch + +device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") +model.to(device) +device +``` + +```python out +device(type='cuda') +``` + +Acum suntem gata de antrenament! Pentru a ne face o idee despre momentul în care se va termina antrenamentul, adăugăm o bară de progres peste numărul de pași de antrenament, folosind biblioteca `tqdm`: + +```py +from tqdm.auto import tqdm + +progress_bar = tqdm(range(num_training_steps)) + +model.train() +for epoch in range(num_epochs): + for batch in train_dataloader: + batch = {k: v.to(device) for k, v in batch.items()} + outputs = model(**batch) + loss = outputs.loss + loss.backward() + + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad() + progress_bar.update(1) +``` + +Observați că partea principală a buclei de antrenament arată foarte asemănător cu cea din introducere. Nu am cerut niciun raport, așa că această buclă de antrenament nu ne va spune nimic despre performanța modelului. Pentru a avea feedback, trebuie să adăugăm o buclă de evaluare. + + +### Bucla de evaluare [[bucla-de-evaluare]] + +Ca și înainte, vom folosi o metrică oferită de biblioteca 🤗 Evaluate. Am văzut deja metoda `metric.compute()`, dar metricle pot de fapt să acumuleze batch-uri pentru noi în timp ce parcurgem bucla de predicție, cu metoda `add_batch()`. Odată ce am acumulat toate batch-urile, putem obține rezultatul final cu `metric.compute()`. Iată cum să implementăm toate acestea într-o buclă de evaluare: + +```py +import evaluate + +metric = evaluate.load("glue", "mrpc") +model.eval() +for batch in eval_dataloader: + batch = {k: v.to(device) for k, v in batch.items()} + with torch.no_grad(): + outputs = model(**batch) + + logits = outputs.logits + predictions = torch.argmax(logits, dim=-1) + metric.add_batch(predictions=predictions, references=batch["labels"]) + +metric.compute() +``` + +```python out +{'accuracy': 0.8431372549019608, 'f1': 0.8907849829351535} +``` + +Din nou, rezultatele voastre vor fi ușor diferite din cauza aleatorietății în inițializarea layer-ului final (model head) și a amestecării datelor, dar ar trebui să fie în aceeași zonă valorică. + + + +✏️ **Încercați!** Modificați bucla de antrenament anterioară pentru a vă rafina modelul pe dataset-ul SST-2. + + + +### Îmbunătățiți circuitul de antrenament cu 🤗 Accelerate[[îmbunătățiți-circuitul-de-antrenament-cu-accelerate]] + + + +Bucla de antrenament pe care am definit-o anterior funcționează bine pe un singur CPU sau GPU. Dar, folosind biblioteca [🤗 Accelerate](https://github.com/huggingface/accelerate), cu doar câteva ajustări putem activa antrenarea distribuită pe mai multe GPU-uri sau TPU-uri. Pornind de la crearea dataloader-urilor de antrenament și validare, iată cum arată bucla noastră manuală de antrenament: + +```py +from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler + +model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) +optimizer = AdamW(model.parameters(), lr=3e-5) + +device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") +model.to(device) + +num_epochs = 3 +num_training_steps = num_epochs * len(train_dataloader) +lr_scheduler = get_scheduler( + "linear", + optimizer=optimizer, + num_warmup_steps=0, + num_training_steps=num_training_steps, +) + +progress_bar = tqdm(range(num_training_steps)) + +model.train() +for epoch in range(num_epochs): + for batch in train_dataloader: + batch = {k: v.to(device) for k, v in batch.items()} + outputs = model(**batch) + loss = outputs.loss + loss.backward() + + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad() + progress_bar.update(1) +``` + +Iar aici sunt modificările: + +```diff ++ from accelerate import Accelerator + from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler + ++ accelerator = Accelerator() + + model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) + optimizer = AdamW(model.parameters(), lr=3e-5) + +- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") +- model.to(device) + ++ train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare( ++ train_dataloader, eval_dataloader, model, optimizer ++ ) + + num_epochs = 3 + num_training_steps = num_epochs * len(train_dataloader) + lr_scheduler = get_scheduler( + "linear", + optimizer=optimizer, + num_warmup_steps=0, + num_training_steps=num_training_steps + ) + + progress_bar = tqdm(range(num_training_steps)) + + model.train() + for epoch in range(num_epochs): + for batch in train_dataloader: +- batch = {k: v.to(device) for k, v in batch.items()} + outputs = model(**batch) + loss = outputs.loss +- loss.backward() ++ accelerator.backward(loss) + + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad() + progress_bar.update(1) +``` + +Prima linie de adăugat este linia de import. A doua linie instanțiază un obiect `Accelerator` care va examina mediul și va inițializa setarea distribuită corespunzătoare. 🤗 Accelerate se ocupă de plasarea pe device pentru voi, așa că puteți elimina liniile care pun modelul pe device (sau, dacă preferați, le puteți schimba să folosească `accelerator.device` în loc de `device`). + +Apoi, partea principală a muncii este făcută în linia care trimite dataloaders, modelul și optimizer-ul la `accelerator.prepare()`. Aceasta va împacheta acele obiecte în containerul potrivit pentru a vă asigura că antrenarea distribuită funcționează corespunzător. Restul modificărilor constau în eliminarea liniei care mută batch-ul pe `device` (din nou, dacă doriți să o păstrați puteți doar să o schimbați să folosească `accelerator.device`) și înlocuirea `loss.backward()` cu `accelerator.backward(loss)`. + + +⚠️ Pentru a beneficia de creșterea vitezei oferită de Cloud TPU-uri, vă recomandăm să împachetați mostrele la o lungime fixă folosind argumentele `padding="max_length"` și `max_length` ale tokenizer-ului. + + +Dacă vreți să copiați și să lipiți pentru a vă juca, iată cum arată bucla completă de antrenament cu 🤗 Accelerate: + +```py +from accelerate import Accelerator +from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler + +accelerator = Accelerator() + +model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) +optimizer = AdamW(model.parameters(), lr=3e-5) + +train_dl, eval_dl, model, optimizer = accelerator.prepare( + train_dataloader, eval_dataloader, model, optimizer +) + +num_epochs = 3 +num_training_steps = num_epochs * len(train_dl) +lr_scheduler = get_scheduler( + "linear", + optimizer=optimizer, + num_warmup_steps=0, + num_training_steps=num_training_steps, +) + +progress_bar = tqdm(range(num_training_steps)) + +model.train() +for epoch in range(num_epochs): + for batch in train_dl: + outputs = model(**batch) + loss = outputs.loss + accelerator.backward(loss) + + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad() + progress_bar.update(1) +``` + +Plasând acest cod într-un fișier `train.py` îl face rulabil pe orice tip de configurare distribuită. Pentru a-l încerca în configurarea voastră distribuită, rulați comanda: + +```bash +accelerate config +``` + +care vă va cere să răspundeți la câteva întrebări și vă va crea un fișier de configurare folosit de comanda: + +``` +accelerate launch train.py +``` + +care va porni antrenarea distribuită. + +Dacă vreți să încercați asta într-un Notebook (de exemplu, pentru a-l testa cu TPU-uri pe Colab), doar lipiți codul într-o funcție `training_function()` și rulați într-o celulă finală: + +```python +from accelerate import notebook_launcher + +notebook_launcher(training_function) +``` + +Puteți găsi mai multe exemple în [repo-ul 🤗 Accelerate](https://github.com/huggingface/accelerate/tree/main/examples). \ No newline at end of file diff --git a/chapters/rum/chapter3/5.mdx b/chapters/rum/chapter3/5.mdx new file mode 100644 index 000000000..acd5cfe51 --- /dev/null +++ b/chapters/rum/chapter3/5.mdx @@ -0,0 +1,25 @@ + + +# Fine-tuning, Check![[fine-tuning-check]] + + + +A fost distractiv! În primele două capitole ați învățat despre modele și tokenizere, iar acum știți cum să le ajustați fin (fine-tune) pentru propriile date. Pentru a recapitula, în acest capitol ați: + +{#if fw === 'pt'} +* Ați învățat despre dataset-urile din [Hub](https://huggingface.co/datasets) +* Ați învățat cum să încărcați și să preprocessați dataset-uri, inclusiv folosind împachetare dinamică (dynamic padding) și colatori +* Ați implementat propria ajustare fină (fine-tuning) și evaluare a unui model +* Ați implementat o buclă de antrenament la un nivel mai scăzut (lower-level) +* Ați folosit 🤗 Accelerate pentru a adapta cu ușurință bucla voastră de antrenament, astfel încât să funcționeze pentru mai multe GPU-uri sau TPU-uri + +{:else} +* Ați învățat despre dataset-urile din [Hub](https://huggingface.co/datasets) +* Ați învățat cum să încărcați și să preprocessați dataset-uri +* Ați învățat cum să ajustați fin și să evaluați un model cu Keras +* Ați implementat o metrică personalizată + +{/if} diff --git a/chapters/rum/chapter3/6.mdx b/chapters/rum/chapter3/6.mdx new file mode 100644 index 000000000..3feba0bfa --- /dev/null +++ b/chapters/rum/chapter3/6.mdx @@ -0,0 +1,301 @@ + + + + +# End-of-chapter quiz[[end-of-chapter-quiz]] + + + +Testați-vă cunoștințele din acest capitol! + +### 1. Dataset-ul `emotion` conține mesaje de pe Twitter etichetate cu emoții. Căutați-l în [Hub](https://huggingface.co/datasets) și citiți descrierea dataset-ului. Care dintre acestea nu este una dintre emoțiile sale de bază? + + + +### 2. Căutați dataset-ul `ar_sarcasm` în [Hub](https://huggingface.co/datasets). Ce tip de sarcină suportă? + +descrierea dataset-ului!" + }, + { + text: "Named entity recognition", + explain: "Nu este corect — aruncați din nou o privire la descrierea dataset-ului!" + }, + { + text: "Răspuns la întrebări (Question answering)", + explain: "Din păcate, nu ați răspuns corect. Încercați din nou!" + } + ]} +/> + +### 3. Cum se așteaptă modelul BERT ca o pereche de propoziții să fie procesată? + +[SEP] pentru a separa cele două propoziții, dar nu este singurul lucru necesar!" + }, + { + text: "[CLS] Tokens_of_sentence_1 Tokens_of_sentence_2", + explain: "Este nevoie de un token special [CLS] la început, dar nu este singurul lucru necesar!" + }, + { + text: "[CLS] Tokens_of_sentence_1 [SEP] Tokens_of_sentence_2 [SEP]", + explain: "Corect!", + correct: true + }, + { + text: "[CLS] Tokens_of_sentence_1 [SEP] Tokens_of_sentence_2", + explain: "Este nevoie atât de un token special [CLS] la început, cât și de un token special [SEP] pentru a separa cele două propoziții, dar mai lipsește ceva!" + } + ]} +/> + +{#if fw === 'pt'} +### 4. Care sunt avantajele metodei `Dataset.map()`? + + + +### 5. Ce înseamnă umplerea dinamică (dynamic padding)? + + + +### 6. Care este scopul unei funcții de „collate"? + +DataCollatorWithPadding în mod specific." + }, + { + text: "Reunește toate eșantioanele într-un batch.", + explain: "Corect! Poți transmite funcția de collate ca argument al unui DataLoader. Am folosit funcția DataCollatorWithPadding, care împachetează toate elementele dintr-un batch astfel încât să aibă aceeași lungime.", + correct: true + }, + { + text: "Preprocesează întregul set de date.", + explain: "Aceasta ar fi o funcție de preprocessing, nu o funcție de collate." + }, + { + text: "Trunchiază secvențele din setul de date.", + explain: "O funcție de collate se ocupă de manipularea batch-urilor individuale, nu a întregului set de date. Dacă sunteți interesați de trunchiere, puteți folosi argumentul truncate al tokenizer." + } + ]} +/> + +### 7. Ce se întâmplă când instanțiați una dintre clasele `AutoModelForXxx` cu un model de limbaj preantrenat (cum ar fi `bert-base-uncased`), care corespunde unei alte sarcini decât cea pentru care a fost antrenat? + +AutoModelForSequenceClassification cu bert-base-uncased, am primit avertismente la instanțierea modelului. Head-ul preantrenat nu este folosit pentru sarcina de clasificare secvențială, așa că este eliminat și un nou head este instanțiat cu greutăți inițializate aleator.", + correct: true + }, + { + text: "Head-ul modelului preantrenat este eliminat.", + explain: "Mai trebuie să se întâmple și altceva. Încercați din nou!" + }, + { + text: "Nimic, pentru că modelul poate fi ajustat fin (fine-tuned) chiar și pentru o altă sarcină.", + explain: "Head-ul preantrenat al modelului nu a fost antrenat pentru această sarcină, deci trebuie eliminat!" + } + ]} +/> + +### 8. Care este scopul folosirii `TrainingArguments`? + +Trainer.", + explain: "Corect!", + correct: true + }, + { + text: "Specifică dimensiunea modelului.", + explain: "Dimensiunea modelului este definită de configurația modelului, nu de clasa TrainingArguments." + }, + { + text: "Conține doar hiperparametrii folosiți pentru evaluare.", + explain: "În exemplu, am specificat și unde va fi salvat modelul și checkpoint-urile. Încercați din nou!" + }, + { + text: "Conține doar hiperparametrii folosiți pentru antrenare.", + explain: "În exemplu, am folosit și un evaluation_strategy, așadar acest lucru afectează evaluarea. Încercați din nou!" + } + ]} +/> + +### 9. De ce ar trebui să folosiți biblioteca 🤗 Accelerate? + +Trainer, nu cu biblioteca 🤗 Accelerate. Încercați din nou!" + }, + { + text: "Face ca buclele noastre de antrenament să funcționeze pe strategii distribuite.", + explain: "Corect! Cu 🤗 Accelerate, buclele voastre de antrenament vor funcționa pentru mai multe GPU-uri și TPU-uri.", + correct: true + }, + { + text: "Oferă mai multe funcții de optimizare.", + explain: "Nu, biblioteca 🤗 Accelerate nu oferă nicio funcție de optimizare." + } + ]} +/> + +{:else} +### 4. Ce se întâmplă când instanțiați una dintre clasele `TFAutoModelForXxx` cu un model de limbaj preantrenat (cum ar fi `bert-base-uncased`), care corespunde unei alte sarcini decât cea pentru care a fost antrenat? + +TFAutoModelForSequenceClassification cu bert-base-uncased, am primit avertismente la instanțierea modelului. Head-ul preantrenat nu este folosit pentru sarcina de clasificare secvențială, așa că este eliminat și un nou head este instanțiat cu greutăți inițializate aleator.", + correct: true + }, + { + text: "Head-ul modelului preantrenat este eliminat.", + explain: "Mai trebuie să se întâmple și altceva. Încercați din nou!" + }, + { + text: "Nimic, pentru că modelul poate fi ajustat fin (fine-tuned) chiar și pentru o altă sarcină.", + explain: "Head-ul preantrenat al modelului nu a fost antrenat pentru această sarcină, deci trebuie eliminat!" + } + ]} +/> + +### 5. Modelele TensorFlow din `transformers` sunt deja modele Keras. Ce avantaj oferă acest lucru? + +TPUStrategy, inclusiv inițializarea modelului." + }, + { + text: "Puteți valorifica metodele existente precum compile(), fit() și predict().", + explain: "Corect! Odată ce aveți datele, antrenarea necesită foarte puțin efort.", + correct: true + }, + { + text: "Învățați atât Keras, cât și transformers.", + explain: "Corect, dar căutăm altceva :)", + correct: true + }, + { + text: "Puteți calcula cu ușurință metrici legate de dataset.", + explain: "Keras ne ajută la antrenarea și evaluarea modelului, nu la calcularea metricilor legate de dataset." + } + ]} +/> + +### 6. Cum vă puteți defini propria metrică personalizată? + +tf.keras.metrics.Metric.", + explain: "Perfect!", + correct: true + }, + { + text: "Folosind API-ul funcțional Keras.", + explain: "Mai încearcă!" + }, + { + text: "Folosind o funcție apelabilă cu semnătura metric_fn(y_true, y_pred).", + explain: "Corect!", + correct: true + }, + { + text: "Căutând pe Google.", + explain: "Nu este răspunsul pe care îl căutăm, dar probabil v-ar putea ajuta să-l găsiți.", + correct: true + } + ]} +/> + +{/if} \ No newline at end of file diff --git a/chapters/rum/chapter4/1.mdx b/chapters/rum/chapter4/1.mdx new file mode 100644 index 000000000..4ef56abf4 --- /dev/null +++ b/chapters/rum/chapter4/1.mdx @@ -0,0 +1,22 @@ +# Platforma Hugging Face Hub[[the-hugging-face-hub]] + + + +Platforma [Hugging Face Hub](https://huggingface.co/) –- site-ul nostru principal –- reprezintă o platformă care permite oricărui utilizator să descopere, utilizeze și contribuie la noi modele și dataseturi. Acesta găzduiește o varietate vastă de modele, cu peste 10.000 disponibile public. Ne vom concentra discuția asupra modelelor în acest capitol, iar pentru dataseturi vom vorbi în Capitolul 5. + +Modelele din Hub nu sunt limitate la 🤗 Transformers sau chiar și NLP. Există și alte modele, cum ar fi cele de la [Flair](https://github.com/flairNLP/flair) și [AllenNLP](https://github.com/allenai/allennlp) pentru NLP, [Asteroid](https://github.com/asteroid-team/asteroid) și [pyannote](https://github.com/pyannote/pyannote-audio) pentru speech, precum și cele de la [timm](https://github.com/rwightman/pytorch-image-models) pentru vision, doar să menționăm câteva. + +Fiecare dintre aceste modele este găzduit ca un repository Git, ceea ce permite crearea versiunilor și reproducerea acestuia. Oferirea modelului pe Hub înseamnă deschiderea sa comunității, făcându-l accesibil oricărui utilizator care dorește să îl utilizeze cu ușurință, eliminând astfel nevoia de a-și antrena propriul model și simplificând utilizarea acestora. + +În plus, oferirea unui model pe Hub face deploy automat la un Inference API pentru acel model. Orice membru al comunității poate testa direct pe pagina modelului cu inputuri personalizate și widget-uri corespunzătoare. + +Cel mai bun lucru este că oferirea și utilizarea oricărui model public pe Hub este complet gratuit! Existează și [planuri plătite](https://huggingface.co/pricing) dacă doriți să oferiți modele în privat. + +Video-ul de mai jos arată modul în care puteți naviga prin Hub. + + + +Crearea unui cont huggingface.co este necesară pentru a continua această parte, deoarece vom crea și gestiona repositorii pe Platforma Hugging Face Hub: [creați un cont](https://huggingface.co/join) \ No newline at end of file diff --git a/chapters/rum/chapter4/2.mdx b/chapters/rum/chapter4/2.mdx new file mode 100644 index 000000000..bbe94669b --- /dev/null +++ b/chapters/rum/chapter4/2.mdx @@ -0,0 +1,98 @@ + + +# Utilizarea modelelor preantrenate[[using-pretrained-models]] + +{#if fw === 'pt'} + + + +{:else} + + + +{/if} + +Hubul Model oferă o modalitate simplă de a selecta modelul adecvat, astfel încât utilizarea sa în orice bibliotecă downstream poate fi efectuată în câteva linii de cod. Să vedem cum se utilizează efectiv unul dintre aceste modele și cum putem contribui înapoi la comunitate. + + +Să presupunem că noi căutăm un French-based model ce poate face mask filling. + +
+Selecting the Camembert model. +
+ +Alegem checkpointul „camembert-base” pentru al încerca. Identificatorul `camembert-base` este tot de ce avem nevoie pentru a începe. În capitolele precedente, am văzut cum putem inițializa modelul folosind funcția `pipeline()`: + +```py +from transformers import pipeline + +camembert_fill_mask = pipeline("fill-mask", model="camembert-base") +results = camembert_fill_mask("Le camembert est :)") +``` + +```python out +[ + {'sequence': 'Le camembert est délicieux :)', 'score': 0.49091005325317383, 'token': 7200, 'token_str': 'délicieux'}, + {'sequence': 'Le camembert est excellent :)', 'score': 0.1055697426199913, 'token': 2183, 'token_str': 'excellent'}, + {'sequence': 'Le camembert est succulent :)', 'score': 0.03453313186764717, 'token': 26202, 'token_str': 'succulent'}, + {'sequence': 'Le camembert est meilleur :)', 'score': 0.0330314114689827, 'token': 528, 'token_str': 'meilleur'}, + {'sequence': 'Le camembert est parfait :)', 'score': 0.03007650189101696, 'token': 1654, 'token_str': 'parfait'} +] +``` + +În mod evident, încărcarea unui model într-un pipeline este extrem de simplu. Singurul lucru la care trebuie să atrageți atenția este că checkpointul ales este adecvat pentru sarcina pe care urmează să o execute. De exemplu, în momentul în care încărăm checkpoint-ul „camembert-base” în pipelineul `fill-mask`, este perfect în regulă. Dar dacă îl încărcam în pipelineul `text-classification`, rezultatele nu vor avea nici o logică, pentru că headul „camembert-base” nu este adecvat pentru această sarcină! Recomandăm utilizarea task selectorului în interfața Hugging Face în scopul selectării checkpointurilor adecvate: + +
+Selectorul de sarcini pe interfața web. +
+ +Puteți inițializa checkpointul în mod direct folosind arhitectura modelului: + +{#if fw === 'pt'} +```py +from transformers import CamembertTokenizer, CamembertForMaskedLM + +tokenizer = CamembertTokenizer.from_pretrained("camembert-base") +model = CamembertForMaskedLM.from_pretrained("camembert-base") +``` + +Însă, recomandăm utilizarea [claselor `Auto*`](https://huggingface.co/transformers/model_doc/auto?highlight=auto#auto-classes), deoarece acestea sunt proiectate să fie architecture-agnostic. În timp ce codul precedent limita utilizatorii la checkpoints loadable în CamemBERT architecture, utilizarea claselor `Auto*` face schimbarea checkpointurilor simplă: + +```py +from transformers import AutoTokenizer, AutoModelForMaskedLM + +tokenizer = AutoTokenizer.from_pretrained("camembert-base") +model = AutoModelForMaskedLM.from_pretrained("camembert-base") +``` +{:else} +```py +from transformers import CamembertTokenizer, TFCamembertForMaskedLM + +tokenizer = CamembertTokenizer.from_pretrained("camembert-base") +model = TFCamembertForMaskedLM.from_pretrained("camembert-base") +``` + +Însă, recomandăm utilizarea [claselor `TFAuto*`](https://huggingface.co/transformers/model_doc/auto?highlight=auto#auto-classes), deoarece acestea sunt proiectate să fie architecture-agnostic. În timp ce codul precedent limita utilizatorii la checkpoints loadable în CamemBERT architecture, utilizarea claselor `TFAuto*` face schimbarea checkpointurilor simplă: + +```py +from transformers import AutoTokenizer, TFAutoModelForMaskedLM + +tokenizer = AutoTokenizer.from_pretrained("camembert-base") +model = TFAutoModelForMaskedLM.from_pretrained("camembert-base") +``` +{/if} + + +În momentul în care folosiți un model preantrenat, asigurați-vă să verificați cum a fost antrenat și pe ce date se bazează. De asemenea, trebuie să cunoasceți limitele și prejudecățile sale. Toată această informație va fi indicată pe cartea modelului. + + diff --git a/chapters/rum/chapter4/3.mdx b/chapters/rum/chapter4/3.mdx new file mode 100644 index 000000000..dc0a68d61 --- /dev/null +++ b/chapters/rum/chapter4/3.mdx @@ -0,0 +1,641 @@ + + +# Partajarea modelelor preantrenate[[sharing-pretrained-models]] + +{#if fw === 'pt'} + + + +{:else} + + + +{/if} + +În următoarele etape, vom explora modalitățile cele mai ușoare de a partaja modelele preantrenate pe 🤗 Hub. Există tooluri și utilities disponibile care fac posibilă partajarea și actualizarea modelelor direct pe Hub, despre care vom vorbi mai jos. + + + +Recomandăm tuturor utilizatorilor care antrenează modele să contribuie prin partajarea lor cu comunitatea - partajarea modelelor, chiar și atunci când sunt antrenate pe dateseturi foarte specifice, va ajuta la economisind timpul altor utilizatori și resurselor și va oferi acces la artefacte antrenate folositoare. În schimb, puteți beneficia de munca altora! + +Există trei moduri de a crea noi repositorii cu modele: + +- Utilizând API-ul `push_to_hub` +- Utilizând biblioteca Python `huggingface_hub` +- Utilizând interfața web + +Odată ce aveți creat un repository, puteți încărca fișiere în el folosind git și git-lfs. Vom trece împreună prin crearea model repositories și încărcarea fișierelor în el în următoarele secțiuni. + + +## Utilizând API-ul `push_to_hub`[[using-the-pushtohub-api]] + +{#if fw === 'pt'} + + + +{:else} + + + +{/if} + +Cea mai simplă modalitate de a încărca fișiere pe Hub este utilizând API-ul `push_to_hub`. + +Înainte de a continua, aveți nevoie să creați un token de autentificare astfel încât API-ul `huggingface_hub` să știe cine sunteți și care sunt namespaces la care aveți acces de scriere. Asigurați-vă că sunteți într-un environment unde aveți instalat `transformers` (vedeti [Configurarea](/course/chapter0)). Dacă sunteți într-un notebook, puteți folosi următoarea funcție pentru a vă autentifica: + +```python +from huggingface_hub import notebook_login + +notebook_login() +``` + +În terminal, puteți rula următoarea comandă: + +```bash +huggingface-cli login +``` + +În ambele cazuri, veți fi rugați să introduceți numele utilizatorului și parola, care sunt aceleași cu cele folosite la autentificare pe Hub. Dacă nu aveți încă un profil pe Hub, vă rugăm să creați unul [aici](https://huggingface.co/join). + +Excelent! Acum aveți tokenul de autentificare stocat în folder-ul cache. Vom crea acum niște repositorii! + +{#if fw === 'pt'} + +Dacă ați lucrat cu API-ul `Trainer` pentru a antrena un model, cea mai ușoară modalitate de a o încărca pe Hub este să setați `push_to_hub=True` când definiți `TrainingArguments`: + +```py +from transformers import TrainingArguments + +training_args = TrainingArguments( + "bert-finetuned-mrpc", save_strategy="epoch", push_to_hub=True +) +``` + +Când chemați `trainer.train()`, `Trainer` va încărca modelul pe Hub de fiecare dată când este salvat (aici, la fiecare epocă) într-un repository namespace-ul tău. Acest repository va fi numit după output directory-ul ales (aici `bert-finetuned-mrpc`), dar puteți alege un alt nume cu `hub_model_id = "un_nume_diferit"`. + +Pentru a încărca modelul într-o organizație din care faceți parte, este suficient să introduceți aceasta în `hub_model_id = "organizația_mea/numele_repositoriului"`. + +Odată ce antrenarea s-a terminat, trebuie să faceți `trainer.push_to_hub()` pentru a încărca ultima versiune a modelului. Acesta va genera apoi un model card cu toate informațiile relevante, inclusiv metadatele despre hyperparametrii utilizați și rezultatele evaluării! Aici este exemplul unui astfel de model card: + +
+ Un exemplu de un card auto-generat. +
+ +{:else} + +Dacă utilizați Keras pentru a antrena modelul dumneavoastră, cea mai ușoară modalitate de a încărca-o pe Hub este să transmiteți un `PushToHubCallback` când chemați `model.fit()`: + +```py +from transformers import PushToHubCallback + +callback = PushToHubCallback( + "bert-finetuned-mrpc", save_strategy="epoch", tokenizer=tokenizer +) +``` + +Apoi, adăugați `callbacks=[callback]` în apelul la `model.fit()`. Callback-ul va încărca apoi modelul pe Hub de fiecare dată când se salvează (aici, la fiecare epocă) într-un repository din namespace-ul tău. Acest repository va fi numit după output directory ales (aici `bert-finetuned-mrpc`), dar puteți alege un alt nume cu `hub_model_id = "un_nume_diferit"`. + +Pentru a încărca modelul într-o organizație din care faceți parte, este suficient să introduceți aceasta în `hub_model_id = "organizația_mea/numele_repositoriului"`. + +{/if} + +La un nivel inferior, accesarea Hub-ului se poate face direct pe modele, tokenizers și configurations objects prin metoda `push_to_hub()`. Această metodă se ocupă atât de crearea repositoriului cât si de încărcarea modelului și tokenizerului direct în el. Nu este nevoie de o interacțiune manuală, precum fața de API-ul pe care îl vom vedea mai jos. + +Pentru a înțelege cum funcționează, luați în considerare inițializarea unui model și a unui tokenizer: + +{#if fw === 'pt'} +```py +from transformers import AutoModelForMaskedLM, AutoTokenizer + +checkpoint = "camembert-base" + +model = AutoModelForMaskedLM.from_pretrained(checkpoint) +tokenizer = AutoTokenizer.from_pretrained(checkpoint) +``` +{:else} +```py +from transformers import TFAutoModelForMaskedLM, AutoTokenizer + +checkpoint = "camembert-base" + +model = TFAutoModelForMaskedLM.from_pretrained(checkpoint) +tokenizer = AutoTokenizer.from_pretrained(checkpoint) +``` +{/if} + +Sunteți liberi să faceți orice ați vrea cu acestea - adăugați tokens la tokenizer, antrenați modelul sau faceți fine-tune. Odată ce sunteți mulțumiți de modelul obținut, weighturile și tokenizerul acestuia , puteți folosi metoda `push_to_hub()` disponibilă direct pe obiectul `model`: + +```py +model.push_to_hub("dummy-model") +``` +Acest lucru va crea un nou repository `dummy-model` în profilul tău și o va popula cu fișierele modelului tău. +Încercați același lucru cu tokenizerul, astfel încât toate fișierele să fie acum disponibile în acest repository: + +```py +tokenizer.push_to_hub("dummy-model") +``` + +Dacă aparțineți unei organizații, specificați doar argumentul `organization` pentru a încărca în namespace-ul acestei organizații: + +```py +tokenizer.push_to_hub("dummy-model", organization="huggingface") +``` + +Dacă doriți să utilizați un anumit token Hugging Face, sunteți liberi să specificați acest lucru metodei `push_to_hub()`: + +```py +tokenizer.push_to_hub("dummy-model", organization="huggingface", use_auth_token="") +``` + +Acum, mergeți la Model Hub pentru a găsi modelul încărcat: *https://huggingface.co/user-or-organization/dummy-model*. + +Apăsați pe tabul "Files and versions", iar acum ar trebui să vedeți fișierele vizibile în următorul screenshot: + +{#if fw === 'pt'} +
+Dummy model containing both the tokenizer and model files. +
+{:else} +
+Dummy model containing both the tokenizer and model files. +
+{/if} + + + +✏️ **Încercați!** Luați modelul și tokenizerul asociat cu checkpointul `bert-base-cased` și încărcați-l pe un repo în namespace-ul tău folosind metoda `push_to_hub()`. Verificați că repo-ul apare în pagina dumneavoastră înainte de a-l șterge. + + + +Ați văzut că metoda `push_to_hub()` acceptă mai multe argumente, ceea ce permite încărcarea într-un repository specific sau namespace al unei organizații, sau utilizarea unui token API diferit. Vă recomandăm să vă uitați la specificația metodei disponibilă direct în [documentația 🤗 Transformers](https://huggingface.co/transformers/model_sharing) pentru a înțelge ceea ce este posibil. + +Metoda `push_to_hub()` este backed de packageul Python [`huggingface_hub`](https://github.com/huggingface/huggingface_hub), care oferă un API direct la Hub-ul Hugging Face. Acesta este integrat în 🤗 Transformers și în mai multe biblioteci pentru machine learning, ca de exemplu [`allenlp`](https://github.com/allenai/allennlp). Deși ne concentrăm pe integrarea în 🤗 Transformers în acest capitol, integrarea sa în propriul dumneavoastră cod sau bibliotecă este simplu. + +Săriți la ultima secțiune pentru a vedea cum să încărcați fișierele în noul repository-ul creat! + +## Utilizarea bibliotecii Python `huggingface_hub`[[using-the-huggingfacehub-python-library]] + +Biblioteca Python `huggingface_hub` este un package care oferă un set de instrumente pentru model și datasets hubs. Oferă metode simple și clase pentru sarcini comune ca +obținerea informațiilor despre repositorii pe hub și gestionarea lor. Oferă API-uri simple care lucrează pe lângă git pentru a gestiona conținutul acestor repositorii și integrarea Hub-ului +în proiectele și bibliotecile tale. + +Similar cu utilizarea API-ului `push_to_hub`, asta va necesita un token de autentificare salvat în cache. Pentru a face acest lucru, veți avea nevoie să folosiți comanda `login` din CLI, cum am menționat în secțiunea anterioară (din nou, asigurați-vă prefixați această comandă cu simbolul `!` dacă rulați în Google Colab): + +```bash +huggingface-cli login +``` + +Packageul `huggingface_hub` oferă mai multe metode și clase utile pentru noi. În primul rând, există câteva metode pentru crearea, ștergerea și gestionarea repositoriilor: + +```python no-format +from huggingface_hub import ( + # Gestionarea utilizatorilor + login, + logout, + whoami, + + # Crearea și gestionarea repositoriilor + create_repo, + delete_repo, + update_repo_visibility, + + # Și câteva metode pentru a obține/schimba informațiile despre conținut + list_models, + list_datasets, + list_metrics, + list_repo_files, + upload_file, + delete_file, +) +``` + + + + +De asemenea, el oferă clasa foarte puternică `Repository` pentru gestionarea unei repository local. Vom explora aceste metode și clasa în următoarele secțiuni pentru a înțelege cum să le utilizați. + +Metoda `create_repo` poate fi utilizată pentru crearea unui nou repository în hub: + +```py +from huggingface_hub import create_repo + +create_repo("dummy-model") +``` + +Acesta va crea repositarul `dummy-model` în namespace-ul tău. Dacă doriți, puteți specifica care organizație să aparțină repositoriului folosind argumentul `organization`: + +```py +from huggingface_hub import create_repo + +create_repo("dummy-model", organization="huggingface") +``` + +Acesta va crea repositoriul `dummy-model` în spațiul organizației `huggingface`, cu condiția că dumneavoastră să apartineți acestei organizații. +Alte argumente care pot fi utile sunt: + +- `private`, pentru a specifica dacă repositarul trebuie să fie vizibil celorlați sau nu. +- `token`, dacă doriți să vă înlocuiți token-ul stocat în cache cu un anumit token. +- `repo_type`, dacă doriți să creați un `dataset` sau `space` în loc de model. Valorile acceptate sunt `"dataset"` și `"space"`. + +Odată ce repositoriul este creat, trebuie să adăugați fișierele în el! Săriți la secțiunea următoare pentru a vedea cele trei moduri în care se poate face acest lucru. + +## Utilizarea interfeței web[[using-the-web-interface]] + +Interfața web oferă instrumente pentru a gestiona repositorii direct în Hub. Cu ajutorul acestei interfețe, puteți crea ușor repositorii, adăuga fișiere (și chiar și fișiere mari!), explora modele, vizualiza diffuri, și multe altele. + +Pentru a crea un nou repositoriu, vizitați [huggingface.co/new](https://huggingface.co/new): + +
+Pagină care prezintă modelul utilizat pentru crearea unui nou repository. +
+ +În primul rând, specificați deținătorul repositoriului: acesta puteți fi fie dumneavoastră, fie orice organizație cu care sunteți afiliat. Dacă alegeți o organizație, modelul va fi prezent pe pagina organizației și toți membrii acesteia vor avea posibilitatea să contribuie la repositoriu. + +În al doilea rând, introduceți numele modelului dumneavoastră. Acest lucru va fi și denumirea repositoriului. În final, puteți specifica dacă doriți ca modelul dumneavoastră să fie public sau privat. Modelele private nu sunt vizibile ceilorlalți. + +După crearea repositoriului, ar trebui să vedeți o pagină ca aceasta: + +
+O pagină goală a modelului după crearea unui nou repository. +
+ +Acesta este locul unde va fi găzduit modelul. Pentru a începe să populați acesta, puteți adăuga un fișier README direct din interfața web. + +
+Fișierul README care arată capacitățile Markdown. +
+ +Fișierul README este scris în format Markdown - vă rugăm să fiți creativi cu el! A treia parte a acestui capitol se ocupă de crearea unui model card. Acestea sunt foarte importante pentru a aduce valoare modelului dumneavoastră, deoarece este acolo unde spuneți celorlalți ce poate face. + +Dacă vă uitați la secțiunea "Fișiere și versiuni", veți vedea că nu sunt prea multe fișiere acolo încă - doar *README.md* pe care l-ați creat dumneavoastră și *.gitattributes* care urmărește fișierele mari. + +
+Secțiunea 'Fișiere și versiuni' arată doar fișierul .gitattributes și README.md. +
+ +Vom vedea mai târziu cum să adăugați câteva fișiere noi. + +## Încărcarea fișierelor modelului[[uploading-the-model-files]] + +Sistemul pentru a gestiona fișierele în Hugging Face Hub se bazează pe git pentru fișierele obișnuite, și pe git-lfs (care se descrifrează ca [Git Large File Storage](https://git-lfs.github.com/)) pentru fișierele mai mari. + +În secțiunea următoare, vom discuta despre trei metode diferite de încărcare a fișierelor în Hub: prin `huggingface_hub` și prin comanda git. + +### Metoda `upload_file`[[the-uploadfile-approach]] + +Prin `upload_file` nu este necesar să instalați git și git-lfs pe sistemul dumneavoastră. Acest lucru încarcă direct fișierele în 🤗 Hub folosind HTTP POST requests. O limitare a acestei metode este că ea nu se ocupă de fișiere care sunt mai mari de 5GB. +Dacă fișierele dumneavoastră sunt mai mari decât 5 GB, vă rugăm să urmați celelalte două metode descrise mai jos. + +API-ul poate fi folosit astfel: + +```py +from huggingface_hub import upload_file + +upload_file( + "/config.json", + path_in_repo="config.json", + repo_id="/dummy-model", +) +``` + +Acest lucru va încărca fișierul `config.json` disponibil la `` la rootul repositoriului ca `config.json`, în `dummy-model` repository. +Alte argumente utile pot fi: + +- `token`, dacă doriți să înlocuiți tokenul stocat în cache cu un alt token. +- `repo_type`, dacă doriți să încărcați într-un `dataset` sau într-un `space` în locul modelului. Valorile acceptate sunt `"dataset"` și `"space"`. + +### Clasa `Repository`[[the-repository-class]] + +Clasa `Repository` gestionează un repository local în-tro manieră asemănătoare gitului. Ea abstracționează majoritatea problemelor pe care le întâlniți cu git pentru a oferi toate caracteristicile necesare. + +Utilizarea acestei clase necesită ca dumneavoastră să aveți instalat git și git-lfs, așadar asigurați-vă că aveți instalat git-lfs (vezi [aici](https://git-lfs.github.com/) pentru instrucțiunile de instalare) și setat înainte de a începe. + +Pentru a vă juca cu repositoriul pe care l-am creat, puteți porni prin inițializarea lui ca un folder local printr-un clonarea repositoriului remote: + +```py +from huggingface_hub import Repository + +repo = Repository("", clone_from="/dummy-model") +``` + +Acesta a creat folderele `` în folderul de lucru. Acest folder conține doar fișierul `.gitattributes` pentru că acesta este singurul fișier creat atunci când inițializați repositoriul prin `create_repo`. + +Acum puteți folosi majoritatea metodelor tradiționale ale gitului: + +```py +repo.git_pull() +repo.git_add() +repo.git_commit() +repo.git_push() +repo.git_tag() +``` + +Și altele! Vă recomandăm să vă uitați la documentația `Repository` disponibilă [aici](https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub#advanced-programmatic-repository-management) pentru o înțelegere generală a tuturor metodelor disponibile. + +Pentru moment, avem un model și un tokenizer pe care doriți să îl trimiteți în hub. Am reușit să clonăm repositoriul local, deci putem salva fișierele în acesta. + +În primul rând asigurați-vă că copia locală este la zi cu ultimele schimbări: + +```py +repo.git_pull() +``` + +Odată ce am facut asta, salvați fișierele modelului și al tokenizerul: + +```py +model.save_pretrained("") +tokenizer.save_pretrained("") +``` + +Folder-ul `` acum conține toate fișierele modelului dumneavoastră și ale tokenizerul. Vom urma fluxul tradițional de git adăugând fișiere în zona de pregătire, făcând commit și push fișierelor în hub: + +```py +repo.git_add() +repo.git_commit("Adăugarea fișierelor modelului și ale tokenizerului") +repo.git_push() +``` + +Felicitări! Ați reușit să încărcați primele fișiere în hub. + +### Folosirea Git[[the-git-based-approach]] + +Acesta este abordarea cea mai de bază pentru încărcarea fișierelor: vom face asta cu ajutorul git și git-lfs direct. Cea mai grea parte este abstractizată prin abordări anterioare, dar există câteva excepții cu metoda următoare, așadar ne vom referi la un use-case mai complicat. + +Pentru această clasă se cere să aveți instalate git și git-lfs, așadar asigurați-vă că aveți [git-lfs](https://git-lfs.github.com/) instalat (vedeți aici instrucțiunile de instalare) și configurat înainte să începeți. + +În primul rând, inițializați git-lfs: + +```bash +git lfs install +``` + +```bash +Updated git hooks. +Git LFS initialized. +``` + +După ce ați făcut acest lucru, primul pas este să faceți o copie a repositoriului dumneavoastră: + +```bash +git clone https://huggingface.co// +``` + +Numele meu de utilizator este `lysandre` și am folosit numele modelului `dummy`, așadar comanda mea se termină cu următorul rezultat: + +``` +git clone https://huggingface.co/lysandre/dummy +``` + +Acum am un folder denumit *dummy* în folderul meu de lucru. Pot intra în folder cu ajutorul `cd` și pot examina conținutul: + +```bash +cd dummy && ls +``` + +```bash +README.md +``` + +Dacă ați creat repositoriul dumneavoastră folosind metodă din partea Hugging Face Hub, `create_repo` , acest folder ar trebui să conțină doar un fișier cu numele *.gitattributes*. Dacă ați urmat instrucțiunile din secțiunea anterioară pentru crearea repositoriului folosind interfața web, atunci folderul ar trebui să conțină un singur fișier *README.md* și, de asemenea, un fișier cu numele *.gitattributes*, pe care nu-l puteți vedea. + +Adăugarea unui fișier de mărime obișnuită, precum un fișier de configurare, un vocabulary file sau orice alt tip de fișier care au mai puțin de câțiva megabytes se realizează exact așa cum ați face în orice sistem git. Cu toate acestea, pentru a încărca fișiere mai mari, este necesară utilizarea a git-lfs pentru a le trimite spre *huggingface.co*. + +Să ne întoarcem la Python pentru a genera un model și tokenizer pe care am dori să le facem commit în repositoriul nostru dummy: + +{#if fw === 'pt'} +```py +from transformers import AutoModelForMaskedLM, AutoTokenizer + +checkpoint = "camembert-base" + +model = AutoModelForMaskedLM.from_pretrained(checkpoint) +tokenizer = AutoTokenizer.from_pretrained(checkpoint) + +# Faceți orice cu modelul, antrenați-l, aplicați fine-tuning... + +model.save_pretrained("") +tokenizer.save_pretrained("") +``` +{:else} +```py +from transformers import TFAutoModelForMaskedLM, AutoTokenizer + +checkpoint = "camembert-base" + +model = TFAutoModelForMaskedLM.from_pretrained(checkpoint) +tokenizer = AutoTokenizer.from_pretrained(checkpoint) + +# Faceți orice cu modelul, antrenați-l, aplicați fine-tuning... + +model.save_pretrained("") +tokenizer.save_pretrained("") +``` +{/if} + +Acum am salvat câteva artefacte de model și tokenizer, așadar să examinăm din nou folderul *dummy*: + +```bash +ls +``` + +{#if fw === 'pt'} +```bash +config.json pytorch_model.bin README.md sentencepiece.bpe.model special_tokens_map.json tokenizer_config.json tokenizer.json +``` +Dacă priviți la dimensiunile fișierelor (de exemplu, folosind `ls -lh`), ar trebui să vedeți că singurul outlier este model state dict file (*pytorch_model.bin*), care are mai mult de 400 MB. + +{:else} +```bash +config.json README.md sentencepiece.bpe.model special_tokens_map.json tf_model.h5 tokenizer_config.json tokenizer.json +``` +Dacă priviți la dimensiunile fișierelor (de exemplu, folosind `ls -lh`), ar trebui să vedeți că singurul outlier este model state dict file (*tf_model.h5*), care are mai mult de 400 MB. + +{/if} + + +✏️ Dacă creați repositoriul folosind interfața web, fișierul *.gitattributes* va fi automat configurat pentru a considera anumite extensii de fișiere, precum *.bin* și *.h5*, ca fiind fișiere mari. În acest caz nu este necesară nici o setare suplimentară din partea ta, pentru că git-lfs le va urmări automat. + + +Acum putem continua procesul în felul nostru obișnuit cu repositoriurile Git tradiționale. Putem adăuga toate fișierele în mediul de stocare a Git folosind comanda `git add`: + +```bash +git add . +``` + +Puteți verifica fișierele curente care sunt în stare de stocare utilizând următoarea comandă: + +```bash +git status +``` + + +{#if fw === 'pt'} +```bash +On branch main +Your branch is up to date with 'origin/main'. + +Changes to be committed: + (use "git restore --staged ..." to unstage) + modified: .gitattributes + new file: config.json + new file: pytorch_model.bin + new file: sentencepiece.bpe.model + new file: special_tokens_map.json + new file: tokenizer.json + new file: tokenizer_config.json +``` +{:else} +```bash +On branch main +Your branch is up to date with 'origin/main'. + +Changes to be committed: + (use "git restore --staged ..." to unstage) + modified: .gitattributes + new file: config.json + new file: sentencepiece.bpe.model + new file: special_tokens_map.json + new file: tf_model.h5 + new file: tokenizer.json + new file: tokenizer_config.json +``` +{/if} + +De asemenea, putem verifica dacă git-lfs monitorizează fisierele corecte folosind comanda sa `status`: + +```bash +git lfs status +``` + + +{#if fw === 'pt'} +```bash +On branch main +Objects to be pushed to origin/main: + + +Objects to be committed: + + config.json (Git: bc20ff2) + pytorch_model.bin (LFS: 35686c2) + sentencepiece.bpe.model (LFS: 988bc5a) + special_tokens_map.json (Git: cb23931) + tokenizer.json (Git: 851ff3e) + tokenizer_config.json (Git: f0f7783) + +Objects not staged for commit: + + +``` + +Vom observa că toate fișierele au `Git` ca handler, cu excepția *pytorch_model.bin* și *sentencepiece.bpe.model*, care au `LFS`. Excelent! + +{:else} +```bash +On branch main +Objects to be pushed to origin/main: + + +Objects to be committed: + + config.json (Git: bc20ff2) + sentencepiece.bpe.model (LFS: 988bc5a) + special_tokens_map.json (Git: cb23931) + tf_model.h5 (LFS: 86fce29) + tokenizer.json (Git: 851ff3e) + tokenizer_config.json (Git: f0f7783) + +Objects not staged for commit: + + +``` + +Observăm că toate fișierele au `Git` ca handler, cu excepția *tf_model.h5*, care are `LFS`. Excelent! + +{/if} + +Acum vom continua cu ultimii pași: commiting și pushing la repo-urile *huggingface.co*: + +``` +git commit -m "Prima versiune a modelului" +``` + + +{#if fw === 'pt'} +```bash +[main b08aab1] Prima versiune a modelului + 7 files changed, 29027 insertions(+) + 6 files changed, 36 insertions(+) + create mode 100644 config.json + create mode 100644 pytorch_model.bin + create mode 100644 sentencepiece.bpe.model + create mode 100644 special_tokens_map.json + create mode 100644 tokenizer.json + create mode 100644 tokenizer_config.json +``` +{:else} +```bash +[main b08aab1] Prima versiune a modelului + 6 files changed, 36 insertions(+) + create mode 100644 config.json + create mode 100644 sentencepiece.bpe.model + create mode 100644 special_tokens_map.json + create mode 100644 tf_model.h5 + create mode 100644 tokenizer.json + create mode 100644 tokenizer_config.json +``` +{/if} + +Pushingul poate lua câteva minute, în funcție de viteza conexiunii tale la internet și mărimea fișierelor: + +```bash +git push +``` + +```bash +Uploading LFS objects: 100% (1/1), 433 MB | 1.3 MB/s, done. +Enumerating objects: 11, done. +Counting objects: 100% (11/11), done. +Delta compression using up to 12 threads +Compressing objects: 100% (9/9), done. +Writing objects: 100% (9/9), 288.27 KiB | 6.27 MiB/s, done. +Total 9 (delta 1), reused 0 (delta 0), pack-reused 0 +To https://huggingface.co/lysandre/dummy + 891b41d..b08aab1 main -> main +``` + +{#if fw === 'pt'} +Dacă ne uităm la repositoriul modelului când acest lucru este finalizat, putem vedea toate fișierele recent adăugate: + +
+Tabul 'Files and versions' conține acum toate fișierele recente adăugate. +
+ +Interfața permite explorarea fișierelor modelului și a commiturilor și vizualizarea diferenței introduse de fiecare commit: + +
+Diferența introdusă de ultimul commit. +
+{:else} +Dacă ne uităm la repositoriul modelului când acest lucru este finalizat, putem vedea toate fișierele recent adăugate: + +
+Tabul 'Files and versions' conține acum toate fișierele recente adăugate. +
+ +Interfața permite explorarea fișierelor modelului și a commiturilor și vizualizarea diferenței introduse de fiecare commit: + +
+Diferența introdusă de ultimul commit. +
+{/if} diff --git a/chapters/rum/chapter4/4.mdx b/chapters/rum/chapter4/4.mdx new file mode 100644 index 000000000..5615a1651 --- /dev/null +++ b/chapters/rum/chapter4/4.mdx @@ -0,0 +1,88 @@ +# Crearea unui card de model[[building-a-model-card]] + + + + +Model card-ul este un fișier care este la fel de important ca și fișierele de model si tokenizer dintr-un repositoriu. Este definiția centrală a modelului, asigurând reutilizarea de către membrii comunității și reproducerea rezultatelor, oferind o platformă pe care alți membri pot construi artefactele lor. + +Documentarea procesului de antrenare și evaluare ajută pe ceilalți să înțeleagă la ce să aștepte de la un model - iar oferirea informațiilor suficiente referitoare la datele folosite si preprocesarea acestora (înainte și după antrenare) vor ajuta la identificarea și înțelegerea limitelor, biasurile și contextului în care modelul este și nu este folositor. + +Prin urmare, crearea unui model card care definește modelul dvs. este un pas foarte important. Aici, oferim câteva sfaturi care v-ar putea ajuta în acest sens. Crearea model cardului se face prin intermediul fișierului `README.md`, pe care l-ați văzut anterior, care este un fișier Markdown. + +Conceptul de "model card" provine dintr-o direcție de cercetare a Google, publicată inițial în articolul ["Model Cards for Model Reporting"](https://arxiv.org/abs/1810.03993) scrisă de Margaret Mitchell et al. O parte semnificativă dintre informațiile conținute aici sunt bazate pe acest articol, iar noi vă recomandăm să verificați dacă doriți să înțelegeți de ce model cardurile sunt atât importante într-o lume care valorifică reproducerea, reutilizarea și echitatea. + +Model cardul începe cu o prezentare scurtă și generală a ceea ce este modelul - urmată de detalii suplimentare în secțiunile următoare: + +- Descrierea modelului +- Utilizări intenționate și limitările modelului +- Cum se utilizează +- Limitări și bias +- Datele de antrenare +- Procedura de antrenare +- Rezultatele evaluării + +Hai să vedem ce ar trebui să conțină fiecare dintre aceste secțiuni. + +### Descrierea modelului[[model-description]] + +Secțiunea de descriere a modelului conține detalii generale despre model. Aceasta include arhitectura, versiunea, dacă a fost introdus într-un articol științific, dacă este disponibilă o implementare originală, autorul și informații generale despre model. Orice drepturi de autor ar trebui să fie atribuite în această secțiune. Informația generală despre procedurile de antrenare, parametrii și avertismente pot fi menționate aici. + +### Utilizări intenționate și limitările modelului[[intended-uses-limitations]] + +Aici descrieți utilizările pentru care modelul este destinat - inclusiv limba și domeniile unde se poate aplica. Această secțiune din model card poate documenta și zone cunoscute ca nefiind în scopul modelului sau unde este probabil să funcționeze suboptimal. + +### Cum se utilizează[[how-to-use]] + +Acesta secțiune ar trebui să includă exemple despre cum să utilizați modelul. Acest lucru poate prezenta utilizarea funcției `pipeline()`, utilizarea claselor de model si tokenizer, și orice cod care credeți că ar putea fi util. + +### Datele de antrenare[[training-data]] + +Această secțiune trebuie să indice datasetul(urile) folosit pentru instruirea modelului. O descriere scurtă a datasetului(urilor) este binevenită. + +### Procedura de antrenare[[training-procedure]] + +Aici descrieți toate aspectele relevante ale antrenarii care sunt utile din punct de vedere al reproducerii. Acest lucru include orice preprocessing sau postprocessing efectuat pe date, precum și detalii ca numărul de epoci pe care a fost antrenat modelul, dimensiunea batch-ului, learning rateul și alte astfel de detalii. + +### Variabilele si metrice[[variable-and-metrics]] + +Aici descrieți metricile utilizate la evaluarea rezultatelor, precum și diferite aspecte pe care le măsurați. Menționați metricile folosite, pe ce dataset și care dataset split, astfel încât să fie ușor de comparat performanțele modelului cu cele ale altor modele. + +### Rezultatele evaluării[[evaluation-results]] + +În sfârșit, indicați cum s-a comportat modelul pe datasetul de evaluare. Dacă modelul foloseste un decision threshold, atunci includeți acest decision threshold în secțiunea respectivă - sau explicați că rezultatele sunt prezentate la diferite threshold-uri pentru utilizările preconizate. + +## Exemplu[[example]] + +Aici puteți găsi câteva exemple ale unor Model Card: + +- [`bert-base-cased`](https://huggingface.co/bert-base-cased) +- [`gpt2`](https://huggingface.co/gpt2) +- [`distilbert`](https://huggingface.co/distilbert-base-uncased) + +Câteva exemple din alte organizații și companii pot fi găsite [aici](https://github.com/huggingface/model_card/blob/master/examples.md). + +## Notă[[note]] + +Model cardurile nu sunt o cerință obligatorie când se publică modelele și nu este necesar să includeți toate secțiunile descrise mai sus în Model Card. Cu toate acestea, documentarea explicită a modelului poate beneficia utilizatorilor viitori, deci vă recomandăm să completați cât mai multe dintre secțiuni. + +## Metadatele cardului de model[[model-card-metadata]] + +Dacă ați explorat puțin Hugging Face Hub atunci ar trebui să fi văzut că anumite modele aparțin anumitor categorii: puteți filtra acestea după diverse domenii. Categoriile modelului sunt identificate prin metadata adăugată în secțiunea de header a cardului. + +Spre exemplu, dacă vă uitați la modelul [`camembert-base`](https://huggingface.co/camembert-base/blob/main/README.md) atunci veți observa următoarea linii din headerul cardului: + +``` +--- +language: fr +license: mit +datasets: +- oscar +--- +``` + +Metadatele acestei secțiuni sunt analizate de Hugging Face Hub, care apoi identifică acest model ca fiind un model francez, cu licență MIT și antrenat pe datasetul Oscar. + +[Toate specificările cardului](https://github.com/huggingface/hub-docs/blame/main/modelcard.md) permite specificarea a mai multor metadate, inclusiv limba, licența, etichetele, dataseturile folosite la antrenare și metricile evaluate. \ No newline at end of file diff --git a/chapters/rum/chapter4/5.mdx b/chapters/rum/chapter4/5.mdx new file mode 100644 index 000000000..deb1921ae --- /dev/null +++ b/chapters/rum/chapter4/5.mdx @@ -0,0 +1,12 @@ +# Partea 1 este completă! + + + +Acesta este sfârșitul primei părți a cursului! Partea 2 va fi lansată pe data de 15 noiembrie, cu un mare eveniment comunitar, mai multe informații găsiți [aici](https://huggingface.co/blog/course-launch-event). + +Acum, sunteți capabili să faceți fine-tune unui model preantrenat pe o problemă de clasificare a textului (o singură sau perechi de propoziții) și să încarci rezultatele la Model Hub. Să fii sigur că ai învățat această primă secțiune, ar trebui să faci exact acest lucru pe o problemă care ți se pare interesantă (și nu neapărat în limba engleză dacă vorbiți altă limbă)! Puteți găsi ajutor în [forumurile Hugging Face](https://discuss.huggingface.co/) și să împărtășiți proiectul dvs. pe [acest subiect](https://discuss.huggingface.co/t/share-your-projects/6803) odată ce ați terminat. + +Ne așteptăm cu nerăbdare să vedem ceea ce veți construi cu aceste cunoștințe :)! \ No newline at end of file diff --git a/chapters/rum/chapter4/6.mdx b/chapters/rum/chapter4/6.mdx new file mode 100644 index 000000000..e5d79271c --- /dev/null +++ b/chapters/rum/chapter4/6.mdx @@ -0,0 +1,233 @@ + + + + +# Quiz la final de capitol[[end-of-chapter-quiz]] + + + +Să testăm ceea ce ai învățat în acest capitol! + +### 1. La ce sunt limitate modelele din Hub? + + + +### 2. Cum poți gestiona modelele pe Hub? + +git-lfs pentru fișiere mari.", + corect: true + } + ] } +/> + +### 3. Ce poți face utilizând interfața web a Hugging Face Hub? + + + +### 4. Ce este un model card? + + + +Chapitru 4 + +### 5. Câte dintre obiectele bibliotecii 🤗 Transformers pot fi împărtășite direct pe Hub cu `push_to_hub()`? + +{#if fw === 'pt'} +push_to_hub, și utilizând-o, vor împărtăși toate fișierele tokenizerului (vocabular, arhitectură tokenizerului, etc.) către un repo. Însă acesta nu este singura soluție corectă!", + correct: true + }, + { + text: "O configurare a modelului", + explain: "Corect! Toate configurațiile modelelor au metoda push_to_hub, și utilizând-o, vor împărtăși configurația către un repo. Și ce altceva poți oferi?", + correct: true + }, + { + text: "Un model", + explain: "Corect! Toate modelele au metoda push_to_hub, și utilizând-o, vor împărtăși ei, precum și fișierele de configurare către un repo. Și nu numai asta!", + correct: true + }, + { + text: "Un Trainer", + explain: "Corect — Trainer implementează metoda push_to_hub, și utilizând-o, vor încărca modelul, configurarea sa, tokenizerul, precum și un draft a unui model card către un repo. Încearcă și altă opțiune!", + correct: true + } + ]} +/> + +{:else} +push_to_hub, și utilizând-o, vor împărtăși toate fișierele tokenizerului (vocabular, arhitectură tokenizerului, etc.) către un repo. Însă acesta nu este singura soluție corectă!", + correct: true + }, + { + text: "O configurare a modelului", + explain: "Corect! Toate configurațiile modelelor au metoda push_to_hub, și utilizând-o, vor împărtăși configurația către un repo. Și ce altceva poți oferi?", + correct: true + }, + { + text: "Un model", + explain: "Corect! Toate modelele au metoda push_to_hub, și utilizând-o, vor împărtăși ei, precum și fișierele de configurare către un repo. Și nu numai asta!", + correct: true + }, + { + text: "Toate cele trei cu un callback dedicat", + explain: "Corect — PushToHubCallback va trimite regular toate aceste obiecte către un repo în timpul antrenării.", + correct: true + } + ]} +/> +{/if} + +### 6. Care este primul pas atunci când utilizați metoda `push_to_hub()` sau instrumentele CLI? + + + + +### 7. Aveți un model și un tokenizer, cum le puteți încărca pe ambele în Hub? + +huggingface_hub", + explain: "Modelele și tokenizerii deja beneficiază de utilitățile huggingface_hub: nu vă trebuie nici un wrapping suplimentar!" + }, + { + text: "Prin salvarea lor pe disc și apelarea transformers-cli upload-model", + explain: "Comanda upload-model nu există." + } + ]} +/> + +### 8. Ce operații git poți face cu clasa `Repository`? + +git_commit() este acolo pentru a face commit.", + correct: true + }, + { + text: "Un pull", + explain: "Acesta este scopul metodei git_pull()", + correct: true + }, + { + text: "Un push", + explain: "Metoda git_push() face acest lucru.", + correct: true + }, + { + text: "Un merge", + explain: "Nu, această operație nu va fi niciodată posibilă cu acest API." + } + ]} +/> \ No newline at end of file diff --git a/chapters/rum/chapter5/1.mdx b/chapters/rum/chapter5/1.mdx new file mode 100644 index 000000000..99ac985b9 --- /dev/null +++ b/chapters/rum/chapter5/1.mdx @@ -0,0 +1,22 @@ +# Introducere[[introduction]] + + + +În [Capitolul 3](/course/chapter3) ați încercat biblioteca 🤗Datasets și ați văzut că existau trei pași principali atunci când vine vorba de fine-tuningul unui model: + +1. Încărcați un dataset din Hugging Face Hub. +2. Preprocesați datele cu `Dataset.map()`. +3. Încărcați și calculați metricele. + +Dar aceasta este doar o mică parte a ceea ce poate face 🤗 Datasets! În acest capitol, ne vom aprofunda în această bibliotecă. Pe parcurs, vom găsi răspunsuri la următoarele întrebări: + +* Ce faceți atunci când datasetul tău nu este pe Hub? +* Cum puteți tăia și împărți un dataset? (Și ce dacă tu _really_ trebuie să folosești Pandas?) +* Ce faceți atunci când datasetul este uriaș și va topi RAM-ul laptopului dumneavoastră? +* Ce este "memory mapping" și Apache Arrow? +* Cum puteți crea propriul dataset și să-l trimiteți pe Hub? + +Tehnicile pe care le veți învăța aici vă vor pregăti pentru sarcinile avansate de tokenizare și fine-tuning din [Capitolul 6](/course/chapter6) și [Capitolul 7](/course/chapter7) -- deci luați o cafea sau două și să începem! \ No newline at end of file diff --git a/chapters/rum/chapter5/2.mdx b/chapters/rum/chapter5/2.mdx new file mode 100644 index 000000000..9ed66fd46 --- /dev/null +++ b/chapters/rum/chapter5/2.mdx @@ -0,0 +1,169 @@ +# Ce fac dacă dataset-ul meu nu este pe Hub?[[what-if-my-dataset-isnt-on-the-hub]] + + + +Știți cum să folosiți [Hugging Face Hub](https://huggingface.co/datasets) pentru a descărca dataseturi, dar vă veți găsi adesea lucrând cu date care sunt stocate fie pe laptopul dumneavoastră, fie pe un server remote. În această secțiune vă vom arăta cum poate fi utilizat 🤗 Datasets pentru a încărca dataseturi care nu sunt disponibile pe Hugging Face Hub. + + + +## Lucrând cu dataseturi locale și remote[[working-with-local-and-remote-datasets]] + +🤗 Datasets oferă scripturi de încărcare pentru a gestiona încărcarea dataseturilor locale și remote. Suportă mai multe formate de date comune, cum ar fi: + +| Data format | Loading script | Example | +| :----------------: | :------------: | :-----------------------------------------------------: | +| CSV & TSV | `csv` | `load_dataset("csv", data_files="my_file.csv")` | +| Text files | `text` | `load_dataset("text", data_files="my_file.txt")` | +| JSON & JSON Lines | `json` | `load_dataset("json", data_files="my_file.jsonl")` | +| Pickled DataFrames | `pandas` | `load_dataset("pandas", data_files="my_dataframe.pkl")` | + +Așa cum se arată în tabel, pentru fiecare format de date trebuie doar să specificăm tipul scriptului de încărcare în funcția `load_dataset()`, alături de un argument `data_files` care specifică calea către unul sau mai multe fișiere. Să începem prin încărcarea unui dataset din fișiere locale; mai târziu vom vedea cum să facem același lucru cu fișiere remote. + +## Încărcarea unui dataset local[[loading-a-local-dataset]] + +Pentru acest exemplu vom folosi [datasetul SQuAD-it](https://github.com/crux82/squad-it/), care este un dataset la scară largă pentru întrebări și răspunsuri în italiană. + +Seturile de antrenare și test sunt găzduite pe GitHub, deci le putem descărca cu o comandă simplă `wget`: + +```python +!wget https://github.com/crux82/squad-it/raw/master/SQuAD_it-train.json.gz +!wget https://github.com/crux82/squad-it/raw/master/SQuAD_it-test.json.gz +``` + +Aceasta va descărca două fișiere comprimate numite *SQuAD_it-train.json.gz* și *SQuAD_it-test.json.gz*, pe care le putem decomprima cu comanda Linux `gzip`: + +```python +!gzip -dkv SQuAD_it-*.json.gz +``` + +```bash +SQuAD_it-test.json.gz: 87.4% -- replaced with SQuAD_it-test.json +SQuAD_it-train.json.gz: 82.2% -- replaced with SQuAD_it-train.json +``` + +Putem vedea că fișierele comprimate au fost înlocuite cu _SQuAD_it-train.json_ și _SQuAD_it-test.json_, și că datele sunt stocate în formatul JSON. + + + +✎ Dacă vă întrebați de ce există un caracter `!` în comenzile shell de mai sus, aceasta este pentru că le rulăm într-un notebook Jupyter. Pur și simplu eliminați prefixul dacă doriți să descărcați și să dezarhivați datasetul într-un terminal. + + + +Pentru a încărca un fișier JSON cu funcția `load_dataset()`, trebuie doar să știm dacă avem de-a face cu JSON obișnuit (similar cu un dicționar imbricat) sau JSON Lines (JSON separat pe linii). Ca multe dataseturi de întrebări și răspunsuri, SQuAD-it folosește formatul imbricat, cu tot textul stocat într-un câmp `data`. Aceasta înseamnă că putem încărca datasetul specificând argumentul `field` după cum urmează: + +```py +from datasets import load_dataset + +squad_it_dataset = load_dataset("json", data_files="SQuAD_it-train.json", field="data") +``` + +În mod implicit, încărcarea fișierelor locale creează un obiect `DatasetDict` cu un split `train`. Putem vedea acest lucru prin inspectarea obiectului `squad_it_dataset`: + +```py +squad_it_dataset +``` + +```python out +DatasetDict({ + train: Dataset({ + features: ['title', 'paragraphs'], + num_rows: 442 + }) +}) +``` + +Aceasta ne arată numărul de rânduri și numele coloanelor asociate cu setul de antrenare. Putem vizualiza unul dintre exemple prin indexarea în splitul `train` după cum urmează: + +```py +squad_it_dataset["train"][0] +``` + +```python out +{ + "title": "Terremoto del Sichuan del 2008", + "paragraphs": [ + { + "context": "Il terremoto del Sichuan del 2008 o il terremoto...", + "qas": [ + { + "answers": [{"answer_start": 29, "text": "2008"}], + "id": "56cdca7862d2951400fa6826", + "question": "In quale anno si è verificato il terremoto nel Sichuan?", + }, + ... + ], + }, + ... + ], +} +``` + +Excelent, am încărcat primul nostru dataset local! Dar în timp ce acest lucru a funcționat pentru setul de antrenare, ceea ce dorim cu adevărat este să includem atât spliturile `train` cât și `test` într-un singur obiect `DatasetDict` astfel încât să putem aplica funcțiile `Dataset.map()` pe ambele splituri deodată. Pentru a face acest lucru, putem furniza un dicționar argumentului `data_files` care mapează fiecare nume de split la un fișier asociat cu acel split: + +```py +data_files = {"train": "SQuAD_it-train.json", "test": "SQuAD_it-test.json"} +squad_it_dataset = load_dataset("json", data_files=data_files, field="data") +squad_it_dataset +``` + +```python out +DatasetDict({ + train: Dataset({ + features: ['title', 'paragraphs'], + num_rows: 442 + }) + test: Dataset({ + features: ['title', 'paragraphs'], + num_rows: 48 + }) +}) +``` + +Acesta este exact ceea ce am dorit. Acum, putem aplica diverse tehnici de preprocesare pentru a curăța datele, tokeniza recenziile și așa mai departe. + + + +Argumentul `data_files` al funcției `load_dataset()` este destul de flexibil și poate fi fie o singură cale de fișier, o listă de căi de fișiere, sau un dicționar care mapează numele spliturilor la căile fișierelor. De asemenea, puteți folosi glob pentru fișiere care se potrivesc unui model specificat conform regulilor folosite de shell-ul Unix (de exemplu, puteți face glob pentru toate fișierele JSON dintr-un director ca un singur split prin setarea `data_files="*.json"`). Consultați [documentația](https://huggingface.co/docs/datasets/loading#local-and-remote-files) 🤗 Datasets pentru mai multe detalii. + + + +Scripturile de încărcare din 🤗 Datasets suportă de fapt decomprimarea automată a fișierelor de intrare, deci am fi putut să sărim peste folosirea `gzip` prin indicarea argumentului `data_files` direct către fișierele comprimate: + +```py +data_files = {"train": "SQuAD_it-train.json.gz", "test": "SQuAD_it-test.json.gz"} +squad_it_dataset = load_dataset("json", data_files=data_files, field="data") +``` + +Acest lucru poate fi util dacă nu doriți să decomprimați manual multe fișiere GZIP. Decomprimarea automată se aplică și altor formate comune precum ZIP și TAR, deci trebuie doar să pointați `data_files` către fișierele comprimate și sunteți gata! + +Acum că știți cum să încărcați fișiere locale pe laptopul sau desktop-ul dumneavoastră, să aruncăm o privire la încărcarea fișierelor remote. + +## Încărcarea unui dataset remote[[loading-a-remote-dataset]] + +Dacă lucrați ca data scientist sau programator într-o companie, există o șansă bună ca dataseturile pe care doriți să le analizați să fie stocate pe un server remote. Din fericire, încărcarea fișierelor remote este la fel de simplă ca încărcarea celor locale! În loc să furnizați o cale către fișiere locale, pointați argumentul `data_files` al `load_dataset()` către unul sau mai multe URL-uri unde sunt stocate fișierele remote. De exemplu, pentru datasetul SQuAD-it găzduit pe GitHub, putem pur și simplu să pointăm `data_files` către URL-urile _SQuAD_it-*.json.gz_ după cum urmează: + +```py +url = "https://github.com/crux82/squad-it/raw/master/" +data_files = { + "train": url + "SQuAD_it-train.json.gz", + "test": url + "SQuAD_it-test.json.gz", +} +squad_it_dataset = load_dataset("json", data_files=data_files, field="data") +``` + +Aceasta returnează același obiect `DatasetDict` obținut mai sus, dar ne economisește pasul de a descărca și decomprima manual fișierele _SQuAD_it-*.json.gz_. Aceasta încheie incursiunea noastră în diversele modalități de încărcare a dataseturilor care nu sunt găzduite pe Hugging Face Hub. Acum că avem un dataset cu care să ne jucăm, să explorăm diverse tehnici de manipulare a datelor! + + + +✏️ **Încercați!** Alegeți un alt dataset găzduit pe GitHub sau [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/index.php) și încercați să îl încărcați atât local cât și remote folosind tehnicile introduse mai sus. Pentru puncte bonus, încercați să încărcați un dataset care este stocat în format CSV sau text (consultați [documentația](https://huggingface.co/docs/datasets/loading#local-and-remote-files) pentru mai multe informații despre aceste formate). + + + + + + diff --git a/chapters/rum/chapter5/3.mdx b/chapters/rum/chapter5/3.mdx new file mode 100644 index 000000000..b79c2453a --- /dev/null +++ b/chapters/rum/chapter5/3.mdx @@ -0,0 +1,741 @@ +# E timpul să tăiem și să analizăm datele[[time-to-slice-and-dice]] + + + +În cea mai mare parte, datele cu care lucrezi nu vor fi perfect pregătite pentru antrenarea modelelor. În această secțiune vom explora features variate pe care 🤗 Datasets le oferă pentru curățirea dataseturilor. + + + +## Slicing și dicing asupra datelor[[slicing-and-dicing-our-data]] + +Asemenea Pandas, 🤗 Datasets oferă mai multe funcții pentru a manipula conținutul obiectelor `Dataset` și `DatasetDict`. Am întâlnit deja metoda `Dataset.map()` în [Capitolul 3](/course/chapter3), iar în această secțiune vom explora alte funcții de care dispunem. + +În acest exemplu, vom folosi [Drug Review Dataset](https://archive.ics.uci.edu/ml/datasets/Drug+Review+Dataset+%28Drugs.com%29) găzduit pe [UC Irvine Machine Learning Repository](https://archive.ics.uci.edu/ml/index.php), care conține reviewurile pacienților privind diverse medicamente, alături de bolile care sunt tratate și o evaluare de 10 stele a satisfacției pacientului. + +În primul rând trebuie să descărcăm și să extragem datele, ceea ce se poate de făcut cu comenzile `wget` și `unzip`: + +```py +!wget "https://archive.ics.uci.edu/ml/machine-learning-databases/00462/drugsCom_raw.zip" +!unzip drugsCom_raw.zip +``` + +Deoarece TSV este o variantă a CSV care folosește taburi în loc de virgulă ca separator, putem încărca aceste fișiere prin folosirea scriptului de încărcare `csv` și specificarea argumentului `delimiter` în funcția `load_dataset()` astfel: + +```py +from datasets import load_dataset + +data_files = {"train": "drugsComTrain_raw.tsv", "test": "drugsComTest_raw.tsv"} +# \t este caracterul tab de Python +drug_dataset = load_dataset("csv", data_files=data_files, delimiter="\t") +``` + +O practică bună atunci când faceți orice fel de analiză a datelor este să vă luați un mic random sample pentru a înțelege cu ce tip de date lucrați. În 🤗 Datasets, putem crea o colecție aleatorie prin legarea funcțiilor `Dataset.shuffle()` și `Dataset.select()`: + +```py +drug_sample = drug_dataset["train"].shuffle(seed=42).select(range(1000)) +# Vizualizați primele câteva exemple +drug_sample[:3] +``` + +```python out +{'Unnamed: 0': [87571, 178045, 80482], + 'drugName': ['Naproxen', 'Duloxetine', 'Mobic'], + 'condition': ['Gout, Acute', 'ibromyalgia', 'Inflammatory Conditions'], + 'review': ['"like the previous person mention, I'm a strong believer of aleve, it works faster for my gout than the prescription meds I take. No more going to the doctor for refills.....Aleve works!"', + '"I have taken Cymbalta for about a year and a half for fibromyalgia pain. It is great\r\nas a pain reducer and an anti-depressant, however, the side effects outweighed \r\nany benefit I got from it. I had trouble with restlessness, being tired constantly,\r\ndizziness, dry mouth, numbness and tingling in my feet, and horrible sweating. I am\r\nbeing weaned off of it now. Went from 60 mg to 30mg and now to 15 mg. I will be\r\noff completely in about a week. The fibro pain is coming back, but I would rather deal with it than the side effects."', + '"I have been taking Mobic for over a year with no side effects other than an elevated blood pressure. I had severe knee and ankle pain which completely went away after taking Mobic. I attempted to stop the medication however pain returned after a few days."'], + 'rating': [9.0, 3.0, 10.0], + 'date': ['September 2, 2015', 'November 7, 2011', 'June 5, 2013'], + 'usefulCount': [36, 13, 128]} +``` + +Atrageți atenția că am fixat seedul în `Dataset.shuffle()` pentru posibilitatea de reproducere. `Dataset.select()` se așteaptă la un iterabil cu indices, deci noi am scris `range(1000)` pentru a primi primele 1000 de exemple din datasetul amestecat. Din acest sample putem vedea câteva ciudățenii în datasetul nostru: + +* Coloana `Unnamed: 0` are un aspect neobișnuit, care sugerează că este un anonymized ID a fiecărui pacient. +* Coloana `condition` conține labeluri majuscule și minuscule. +* Recenziile au lungimi variate și conțin caractere Python precum `\r\n` şi caractere HTML ca `&\#039;`. + +Hai să vedem cum putem folosi 🤗 Datasets pentru a face față fiecărei dintre aceste probleme. Pentru a testa ipoteza identificării pacientului pentru coloana `Unnamed: 0`, putem folosi funcția `Dataset.unique()` pentru a verifica dacă numărul de ID-uri corespunde cu numărul de rânduri în fiecare split: + +```py +for split in drug_dataset.keys(): + assert len(drug_dataset[split]) == len(drug_dataset[split].unique("Unnamed: 0")) +``` + +Aceasta pare să confirme ipoteza, deci putem curăța datasetul puțin, redenumind coloana `Unnamed: 0` pentru a-i da un nume mai interpretabil. Putem folosi funcția `DatasetDict.rename_column()` pentru a renumea coloana în același timp în ambele splituri: + +```py +drug_dataset = drug_dataset.rename_column( + original_column_name="Unnamed: 0", new_column_name="patient_id" +) +drug_dataset +``` + +```python out +DatasetDict({ + train: Dataset({ + features: ['patient_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount'], + num_rows: 161297 + }) + test: Dataset({ + features: ['patient_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount'], + num_rows: 53766 + }) +}) +``` + + + +✏️ **Încearcă!** Folosiți funcția `Dataset.unique()` pentru a găsi numărul de medicamente și condiții unice în seturile de antrenare și testare. + + + +În continuare, vom normaliza toate `condition` labels folosind `Dataset.map()`. La fel cum am făcut cu tokenizarea în [Capitolul 3](/course/chapter3), putem defini o funcție simplă care poate fi aplicată pe toate rândurile fiecărui split din `drug_dataset`: + +```py +def lowercase_condition(example): + return {"condition": example["condition"].lower()} + + +drug_dataset.map(lowercase_condition) +``` + +```python out +AttributeError: 'NoneType' object has no attribute 'lower' +``` + +Oh no, am întâmpinat o problemă cu funcția map! Din eroarea noastră se poate deduce că unele intrări din coloana `condition` sunt `None`, care nu pot fi convertite la caracterul mic pentru că nu sunt string-uri. Vom elimina aceste rânduri folosind `Dataset.filter()`, care funcționează în mod similar cu `Dataset.map()` și se așteaptă o funcție care primește un exemplu al datasetului. + +În loc de a scrie o funcție explicită ca: + +```py +def filter_nones(x): + return x["condition"] is not None +``` + +și apoi să rulăm `drug_dataset.filter(filter_nones)`, putem face acest lucru într-o linie folosind o _funcție lambda_. În Python, funcțiile lambda sunt funcții mici care pot fi definite fără a le numi. Ele au forma generală: + +``` +lambda : +``` + +unde `lambda` este unul dintre [cuvintele cheie](https://docs.python.org/3/reference/lexical_analysis.html#keywords) Python, `` reprezintă o listă/set de valori separate prin virgulă care definesc inputurile funcției și `` reprezintă operațiile pe care dorim să le executăm. De exemplu, putem defini o funcție lambda care ridică un număr la pătrat: + +```py +lambda x: x * x +``` + +Pentru a aplica această funcție la un input, trebuie să îi facem wrap și pe să punem inputul în paranteze: + +```py +(lambda x: x * x)(3) +``` + +```python out +9 +``` + +La fel, putem defini funcții lambda cu mai multe argumente prin separarea acestora prin virgulă. De exemplu, putem calcula suprafața unui triunghi ca: + +```py +(lambda base, height: 0.5 * base * height)(4, 8) +``` + +```python out +16.0 +``` + +Funcțiile lambda sunt utile atunci când dorim să definim funcții mici, pentru o singură folosire (pentru mai multe informații despre ele, recomandăm citirea excelentului [Real Python tutorial](https://realpython.com/python-lambda/) scris de Andre Burgaud). În contextul 🤗 Datasets, putem utiliza funcțiile lambda pentru a defini operații simple de map și filter, astfel încât să eliminăm intrările `None` din datasetul nostru: + +```py +drug_dataset = drug_dataset.filter(lambda x: x["condition"] is not None) +``` + +Cu intrările `None` eliminate, putem normaliza coloana `condition`: + +```py +drug_dataset = drug_dataset.map(lowercase_condition) +# Verificăm dacă lowercasing a funcționat +drug_dataset["train"]["condition"][:3] +``` + +```python out +['left ventricular dysfunction', 'adhd', 'birth control'] +``` + +Funcționează! Acum că am curățat labelurile, să vedem cum putem curăți și recenziile. + +## Crearea de noi coloane[[creating-new-columns]] + +Atunci când lucrați cu recenziile clienților, o practică bună este să verificați numărul de cuvinte în fiecare recenzie. O recenzie poate fi doar un singur cuvânt, cum ar fi "Excelent!" sau un eseu complet care are sute de cuvinte și depinde de cazul pe care îl aveți la vedere, aici trebuie să vă asigurați că faceți față acestor extreme diferit. Pentru a calcula numărul de cuvinte în fiecare recenzie, vom folosi un heuristic aproximativ bazat pe splittingul textului prin spații. + +Vom defini o funcție simplă care numără numărul de cuvinte din fiecare recenzie: + +```py +def compute_review_length(example): + return {"review_length": len(example["review"].split())} +``` + +Spre deosebire de funcția `lowercase_condition()`, `compute_review_length()` returnează un dicționar ale cărui key nu corespund uneia dintre numele coloanelor din dataset. În acest caz, atunci când `compute_review_length()` este transmis în `Dataset.map()`, el va fi aplicat pe toate rândurile din dataset pentru a crea o nouă coloană `review_length`: + +```py +drug_dataset = drug_dataset.map(compute_review_length) +# Inspectăm primul exemplu de training +drug_dataset["train"][0] +``` + +```python out +{'patient_id': 206461, + 'drugName': 'Valsartan', + 'condition': 'left ventricular dysfunction', + 'review': '"It has no side effect, I take it in combination of Bystolic 5 Mg and Fish Oil"', + 'rating': 9.0, + 'date': 'May 20, 2012', + 'usefulCount': 27, + 'review_length': 17} +``` + +Așa cum era de așteptat, putem vedea o nouă coloană `review_length` adăugată la setul de antrenare. Putem sorta această nouă coloană cu `Dataset.sort()` pentru a vedea cum valorile extreme arată: + +```py +drug_dataset["train"].sort("review_length")[:3] +``` + +```python out +{'patient_id': [103488, 23627, 20558], + 'drugName': ['Loestrin 21 1 / 20', 'Chlorzoxazone', 'Nucynta'], + 'condition': ['birth control', 'muscle spasm', 'pain'], + 'review': ['"Excellent."', '"useless"', '"ok"'], + 'rating': [10.0, 1.0, 6.0], + 'date': ['November 4, 2008', 'March 24, 2017', 'August 20, 2016'], + 'usefulCount': [5, 2, 10], + 'review_length': [1, 1, 1]} +``` + +Precum am presupus, unele recenii conțin doar un singur cuvânt, ceea ce, deși ar putea fi OK pentru analiza sentimentului, nu ar fi informativ dacă vrem să prezicem condiției. + + + +🙋 O alternativă la adăugarea unei noi coloane într-un dataset este funcția `Dataset.add_column()`. Aceasta permite să oferiți coloana ca o listă Python sau array NumPy și poate fi utilă în situații în care `Dataset.map()` nu este bine adaptat pentru analiza dumneavoastră. + + + +Hai să folosim funcția `Dataset.filter()` pentru a elimina recenziile care conțin mai puțin de 30 de cuvinte. Similar cum am făcut în cazul coloanei `condition`, putem elimina recenziile foarte scurte cerând ca recenziile să aibă o lungime mai mare decât acest prag: + +```py +drug_dataset = drug_dataset.filter(lambda x: x["review_length"] > 30) +print(drug_dataset.num_rows) +``` + +```python out +{'train': 138514, 'test': 46108} +``` + +După cum vedeți, aceasta a eliminat aproximativ 15% din recenziile noastrem, din seturile originale de antrenare și testare. + + + +✏️ **Încercați!** Folosiți funcția `Dataset.sort()` pentru a inspecta recenziile cu cele mai mari numere de cuvinte. Vezi [documentația](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.sort) pentru a vedea ce argument trebuie să folosești pentru a sorta recenziile în ordine descrescătoare. + + + +Ultima chestie de care trebuie să ne ocupăm este prezența caracterelor HTML în recenziile noastre. Putem folosi modulul `html` din Python pentru a face unescape acestor caractere: + +```py +import html + +text = "I'm a transformer called BERT" +html.unescape(text) +``` + +```python out +"I'm a transformer called BERT" +``` + +Vom folosi `Dataset.map()` pentru a face unescape toate caracterele HTML din corpus: + +```py +drug_dataset = drug_dataset.map(lambda x: {"review": html.unescape(x["review"])}) +``` + +În mod evident, metoda `Dataset.map()` este foarte utilă pentru procesarea datelor – și nu am abordat decât o mică parte din ceea ce poate face! + +## Superputerile metodei `map()`[[the-map-methods-superpowers]] + +Metoda `Dataset.map()` acceptă un argument `batched` care, dacă este setat pe `True`, cauzează ca ea să trimită un batch de exemple la funcția map în același timp (dimensiunea batchului poate fi configurată dar defaultul este 1.000). De exemplu, anterior am folosit o funcție map care a făcut unescaped toate caracterele HTML din recenziile noastre și i-a luat câteva secunde să execute (puteți citi timpul pe progress bars). Putem accelera acest lucru prin procesarea mai multor elemente în același timp folosind list comprehension. + +Când specificați `batched=True` funcția primește un dicționar cu câmpurile datasetului, dar fiecare valoare este acum _list of values_ și nu doar o singură valoare. Valoarea de return a `Dataset.map()` ar trebui să fie la fel: un dicționar cu câmpurile pe care dorim să le actualizăm sau adăugăm în datasetul nostru, și o listă de valori. De exemplu, mai jos este alt mod de a face unescape tuturor caracterelor HTML din recenziile noastre, folosind `batched=True`: + +```py +new_drug_dataset = drug_dataset.map( + lambda x: {"review": [html.unescape(o) for o in x["review"]]}, batched=True +) +``` + +Dacă executați acest cod într-un notebook, veți vedea că această comandă se execută mult mai rapid decât cea anterioră. Și nu pentru că recenziile noastre au fost deja HTML-unescaped – dacă reexecutați instrucția precedentă (fără `batched=True`), ea va lua același timp ca înainte. Acest lucru se datorează faptului că list comprehension sunt mai rapide decât executarea aceluiași cod într-un `for` loop, și am câștigat, de asemenea, puțină performanțp accesând multe elemente în același timp, în loc unul câte unul. + +Folosirea `Dataset.map()` cu `batched=True` este esențială pentru a obține viteza "rapidă" a tokenizerilor pe care îi vom întâlni în [Capitolul 6](/course/chapter6), care pot repede să tokenizeze listelor mari de texte. De exemplu, pentru tokenizarea tuturor recenziilor medicamentelor cu un tokenizer rapid, putem folosi o funcție ca aceasta: + +```py +from transformers import AutoTokenizer + +tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") + + +def tokenize_function(examples): + return tokenizer(examples["review"], truncation=True) +``` + +Așa cum am văzut în [Capitolul 3](/course/chapter3), putem transmite un singur sau câteva exemple către tokenizer, așadar putem folosi această funcție cu sau fără `batched=True`. Hai să ne folosim de această oportunitate și să comparăm performanța diferitelor opțiuni. Într-un notebook puteți măsura timpul unei instrucțiie de o line prin adăugarea `%time` înaintea acelei linii de cod pe care doriți să o măsurați: + +```python no-format +%time tokenized_dataset = drug_dataset.map(tokenize_function, batched=True) +``` + +Puteți și să măsurați un întreg cell prin scrierea `%%time` la începutul celulei. În hardware-ul pe care l-am executat, acest lucru a arătat 10.8s pentru această instrucție (este numărul scris după "Wall time"). + + + +✏️ **Încercați!** Executați aceeași instrucție cu și fără `batched=True`, apoi încercați-o cu un tokenizer lent (adaugați `use_fast=False` în metoda `AutoTokenizer.from_pretrained()`), astfel să puteți vedea ce numere obțineți pe hardwareul vostru. + + + +Aici sunt rezultatele pe care le-am obținut cu și fără batching, folosind un tokenizer rapid și lent: + +Options | Fast tokenizer | Slow tokenizer +:--------------:|:--------------:|:-------------: +`batched=True` | 10.8s | 4min41s +`batched=False` | 59.2s | 5min3s + +Aceasta înseamnă că utilizarea unui tokenizer rapid cu opțiunea `batched=True` este de 30 de ori mai rapidă decât varianta lentă fără batching - acest lucru este pur și simplu uimitor! Acesta este motivul principal pentru care tokenizerii rapizi sunt setați implicit când se utilizează `AutoTokenizer` (și de ce sunt numiți "rapizi"). Ei pot atinge o asemenea accelerație datorită faptului că codul de tokenizare este executat în Rust, care este un limbaj care facilitează paralelizarea execuției. + +Parallelization este și motivul pentru care tokenizerul rapid realizează o accelerare de aproape 6 ori cu batching: nu puteți paraleliza o singură operație de tokenizare, dar atunci când doriți să tokenizați multe texte în același timp, puteți să faceți split execuției pe mai multe procese, fiecare răspunzând pentru propriile texte. + +`Dataset.map()` are și o capacitate de parallelization proprie. Deoarece nu sunt susținute de Rust, nu pot să le ofere aceeași accelerație tokenizerilori înceți ca tokenizerilor rapizi, dar pot încă fi utili (în special dacă utilizați un tokenizer care nu are o variantă rapidă). Pentru a activa multiprocessingul, folosiți argumentul `num_proc` și specificați numărul de procese să fie utilizate în apelul `Dataset.map()`: + +```py +slow_tokenizer = AutoTokenizer.from_pretrained("bert-base-cased", use_fast=False) + + +def slow_tokenize_function(examples): + return slow_tokenizer(examples["review"], truncation=True) + + +tokenized_dataset = drug_dataset.map(slow_tokenize_function, batched=True, num_proc=8) +``` + +Puteți experimenta puțin cu timpii pentru a determina numărul de procese optime; în cazul nostru 8 s-a dovedit a produce cea mai mare accelerație. Aici sunt rezultatele pe care le-am obținut cu și fără multiprocessing: + +Options | Fast tokenizer | Slow tokenizer +:--------------:|:--------------:|:-------------: +`batched=True` | 10.8s | 4min41s +`batched=False` | 59.2s | 5min3s +`batched=True`, `num_proc=8` | 6.52s | 41.3s +`batched=False`, `num_proc=8` | 9.49s | 45.2s + +Aceste rezultate sunt mult mai bune pentru tokenizerul lent, dar și performanța tokenizerului rapid a fost semnificativ îmbunătățită. Cu toate acestea, trebuie să reamintim că aceasta nu va fi întotdeauna cazul - testele noastre au arătat că este mai rapid să utilizați `batched=True` fără acest argument în cazurile în care valoarea lui `num_proc` diferă de 8. În general, nu vă recomandăm utilizarea multiplicării proceselor pentru tokenizorii rapizi cu `batched=True`. + + + +Utilizarea `num_proc` pentru a accelera procesarea este de obicei o idee excelentă, atâta timp cât funcția pe care o utilizați nu utilizează deja multiprocessing. + + + +Toate aceste funcționalități condensate într-o singură metodă este foarte impresionant, dar asta nu e totul! Cu `Dataset.map()` și `batched=True` puteți modifica numărul de elemente din datasetul dumneavoastră. Acesta este extrem de util în numeroase situații în care doriți să creați mai multe caracteristici de antrenare dintr-un singur exemplu, și vom avea nevoie de acest lucru ca parte a preprocesării pentru câteva dintre sarcinile NLP pe care le vom discuta în [Capitolul 7](/course/chapter7). + + + +💡 În machine learning, un _exemplu_ este de obicei definit ca fiind un set de _features_ care se oferă modelului. În unele contexte, acestea vor fi seturile de coloane dintr-un `Dataset`, dar în altele (ca și aici și pentru răspunderea la întrebări) mai multe caracteristici pot fi extrase dintr-un singur exemplu și să aparțină unei singure coloane. + + + +Hai să vedem cum funcționează! Aici vom tokeniza exemplele și le vom face truncatela lungimea maximă de 128, dar vom cere tokenizerului să returneze *toate* chunkurile de text în loc de prima. Acest lucru poate fi făcut cu `return_overflowing_tokens=True`: + +```py +def tokenize_and_split(examples): + return tokenizer( + examples["review"], + truncation=True, + max_length=128, + return_overflowing_tokens=True, + ) +``` + +Hai să testăm acest lucru pe un exemplu înainte de a folosi `Dataset.map()` pentru întreg datasetul: + +```py +result = tokenize_and_split(drug_dataset["train"][0]) +[len(inp) for inp in result["input_ids"]] +``` + +```python out +[128, 49] +``` + +Așadar, primul nostru exemplu din setul de antrenare a devenit două features pentru că a fost tokenizat mai mult decât lungimea maximă de tokenuri pe care am specificat-o: prima cu lungimea 128 și a doua cu lungimea 49. Acum trebuie să facem acest lucru pentru toate elementele din dataset! + +```py +tokenized_dataset = drug_dataset.map(tokenize_and_split, batched=True) +``` + +```python out +ArrowInvalid: Column 1 named condition expected length 1463 but got length 1000 +``` + +Oh no! Acesta nu a funcționat! De ce? Citind eroarea vom afla motivul: existența unei incompatibilități în lungimea uneia dintre coloane - una cu o lungime de 1,463 și alta de 1,000. Dacă ați privit [documentația](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.map) Dataset.map(), puteți să vă reamintiți că este numărul de sampleuri care sunt oferite funcției pe care noi le facem mapping; aici aceste 1,000 exemplare creează 1,463 features noi, ceea ce duce la un shape error. + +Problema este că încercăm să amestecăm două dataseturi cu mărimi diferite: coloanele `drug_dataset` vor avea un număr determinat de exemple (cele 1,000 din eroare), dar `tokenized_dataset` pe care îl construim va fi mai mare (cel cu 1,463 din eroare; el este mai mare decât 1,000 pentru că tokenizăm reviewrile lungi în mai multe exemple folosind `return_overflowing_tokens=True`). Acest lucru nu funcționează pentru un `Dataset`, așadar trebuie să eliminăm sau să modificămm coloanele din datasetul vechi pentru a se potrivi dimensiunea cu cea din noul dataset. Putem face ultima din cele două opțiuni folosind argumentul `remove_columns`: + +```py +tokenized_dataset = drug_dataset.map( + tokenize_and_split, batched=True, remove_columns=drug_dataset["train"].column_names +) +``` + +Acum acest lucru funcționează fără erori. Putem verifica că noul dataset are mai multe elemente decât datasetul original prin compararea lungimilor: + +```py +len(tokenized_dataset["train"]), len(drug_dataset["train"]) +``` + +```python out +(206772, 138514) +``` + +Am menționat că putem rezolva problema lungimilor diferite are coloanelor prin schimbarea vechilor coloane la aceeași dimensiune cu cele noi. Pentru aceasta, vom avea nevoie de câmpul `overflow_to_sample_mapping` returnat de tokenizer atunci când setăm `return_overflowing_tokens=True`. El ne oferă un mapping de la un nou feature index la indicele sampleului din care a provenit. Prin intermediul acesta, putem asocia fiecărei key prezentă în datasetul original cu o listă de valori de dimensiune corectă prin repetarea valorilor fiecărui exemplu atâta timp cât produce caracteristici noi: + +```py +def tokenize_and_split(examples): + result = tokenizer( + examples["review"], + truncation=True, + max_length=128, + return_overflowing_tokens=True, + ) + # Extragem maparea între noul și vechiul indice + sample_map = result.pop("overflow_to_sample_mapping") + for key, values in examples.items(): + result[key] = [values[i] for i in sample_map] + return result +``` + +Putem observa că funcționează cu `Dataset.map()` fără ca noi să avem nevoie să eliminăm coloanele vechi: + +```py +tokenized_dataset = drug_dataset.map(tokenize_and_split, batched=True) +tokenized_dataset +``` + +```python out +DatasetDict({ + train: Dataset({ + features: ['attention_mask', 'condition', 'date', 'drugName', 'input_ids', 'patient_id', 'rating', 'review', 'review_length', 'token_type_ids', 'usefulCount'], + num_rows: 206772 + }) + test: Dataset({ + features: ['attention_mask', 'condition', 'date', 'drugName', 'input_ids', 'patient_id', 'rating', 'review', 'review_length', 'token_type_ids', 'usefulCount'], + num_rows: 68876 + }) +}) +``` + +Obținem același număr de features training ca și înainte, dar acum am păstrat toate câmpurile vechi. Dacă ai nevoie de ele pentru post-procesare după aplicarea modelului, ar fi util să folosiți această abordare. + +Acum ați învățat cum pot fi utilizate 🤗 Datasets pentru preprocesarea datelor prin metode diferite. Deși funcțiile de preprocesare ale 🤗 Datasets vor acoperi majoritatea nevoilor de antrenare a modelului, +există momente în care veți avea nevoie să treceți la Pandas pentru accesul la caracteristici mai puternice, cum ar fi `DataFrame.groupby()` sau high-level APIs pentru vizualizare. Din fericire, 🤗 Dataset a fost proiectat astfel încât să fie interoperabil cu biblioteci precum Pandas, NumPy, PyTorch, TensorFlow și JAX. Hai să vedem cum se face acest lucru. + +## De la `Dataset`s la `DataFrame`s și înapoi[[from-datasets-to-dataframes-and-back]] + + + +Pentru a permite conversia între diferite biblioteci, 🤗 Datasets oferă o funcția `Dataset.set_format()`. Această funcție schimbă doar _output format_ al datasetului, deci puteți ușor să treceți la un alt format fără a afecta _data format_ de bază, care este Apache Arrow. Formatarea se face direct. Pentru a demonstra acest lucru, hai să convertim datasetul nostru în Pandas: + +```py +drug_dataset.set_format("pandas") +``` + +Acum, atunci când accesăm elementele din dataset, obținem `pandas.DataFrame` în loc de un dicționar: + +```py +drug_dataset["train"][:3] +``` + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
patient_iddrugNameconditionreviewratingdateusefulCountreview_length
095260Guanfacineadhd"My son is halfway through his fourth week of Intuniv..."8.0April 27, 2010192141
192703Lybrelbirth control"I used to take another oral contraceptive, which had 21 pill cycle, and was very happy- very light periods, max 5 days, no other side effects..."5.0December 14, 200917134
2138000Ortho Evrabirth control"This is my first time using any form of birth control..."8.0November 3, 20151089
+ +În continuare, vom crea un `pandas.DataFrame` pentru întregul set de antrenare prin selectarea tuturor elementelor din `drug_dataset["train"]`: + +```py +train_df = drug_dataset["train"][:] +``` + + + +🚨 În spatele scenei, `Dataset.set_format()` schimbă formatul returnat pentru `__getitem__()` dunder method a datasetului. Asta înseamnă că atunci când dorim să creăm un nou obiect ca `train_df` dintr-un `Dataset` în formatul `"pandas"`, trebuie să tăiem întreg datasetul pentru a obține un `pandas.DataFrame`. Puteți verifica voi înşivă că tipul lui `drug_dataset["train"]` este `Dataset`, indiferent de output format. + + + +Acum putem utiliza toate funcționalitățile Pandas pe care le dorim. De exemplu, putem face fancy chaining pentru a calcula distribuția clasei printre intrările `condition`: + +```py +frequencies = ( + train_df["condition"] + .value_counts() + .to_frame() + .reset_index() + .rename(columns={"index": "condition", "condition": "frequency"}) +) +frequencies.head() +``` + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
conditionfrequency
0birth control27655
1depression8023
2acne5209
3anxiety4991
4pain4744
+ + +Și odată ce suntem gata cu analiza noastră Pandas, putem crea întotdeauna un nou obiect `Dataset` prin utilizarea funcției `Dataset.from_pandas()`: + + +```py +from datasets import Dataset + +freq_dataset = Dataset.from_pandas(frequencies) +freq_dataset +``` + + + + +✏️ **Încercați!** Calculați media ratingului per medicament și salvați rezultatul într-un nou `Dataset`. + + + + +Acest lucru completează turul nostru de tehnici de preprocesare disponibile în 🤗 Datasets. Pentru a finisa secțiunea, vom crea un set de validare pentru a pregăti datasetul pentru antrenarea unui clasificator. Înainte de a face asta, noi vom reseta output formatul `drug_dataset` de la `"pandas"` la `"arrow" : + + +```python +drug_dataset.reset_format() +``` + +## Crearea unui set de validare [[creating-a-validation-set]] + +Deși avem deja un set de testare pe care îl putem folosi pentru evaluare, este o bună practică să lăsăm setul de test neschimbat și să creăm un set de validare în timpul developmentului. Odată ce sunteți fericiți cu performanța modelului pe setul de validare, puteți face o verificare finală a setului de test. Acest proces ajută la reducerea riscului ca să vă adaptați prea mult setul de test și să depuneți un model care poate eșua analizând date reale. + +🤗 Datasets oferă o funcție `Dataset.train_test_split()` bazată pe funcționalitatea celebră din `scikit-learn`. O vom folosi pentru a împărți setul nostru de antrenare în split-uri de `train` și `validation` (setăm argumentul `seed` pentru reproductabilitate): + +```python +drug_dataset_clean = drug_dataset["train"].train_test_split(train_size=0.8, seed=42) +# Renumește implicit "test" split-ul la "valide" +drug_dataset_clean["validation"] = drug_dataset_clean.pop("test") +# Adaugă setul de test în `DatasetDict` +drug_dataset_clean["test"] = drug_dataset["test"] +drug_dataset_clean +``` + +```python out +DatasetDict({ + train: Dataset({ + features: ['patient_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length', 'review_clean'], + num_rows: 110811 + }) + validation: Dataset({ + features: ['patient_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length', 'review_clean'], + num_rows: 27703 + }) + test: Dataset({ + features: ['patient_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length', 'review_clean'], + num_rows: 46108 + }) +}) +``` + +Foarte bine, am pregătit acum un dataset care este gata pentru antrenarea unor modele! În [Secțiunea 5](/course/chapter5/5) vom arăta cum puteți încărca seturile de date în Hugging Face Hub, dar în acest moment hai să punem capăt analizei noastre prin examinarea a câteva modalități de salvare a seturilor de date pe dispozitivele locale. + +## Salvarea unui dataset[[saving-a-dataset]] + + + +Deși 🤗 Datasets va face cache fiecărui dataset și a operațiilor efectuate asupra acestuia, există momente în care veți dori să salvați un dataset pe disc (de exemplu, în cazul în care cache-ul se șterge). După cum vedeți în tabelul de mai jos, 🤗 Datasets oferă trei funcții principale pentru salvarea datelor în formate diferite: + +| Format de date | Funcție | +| :---------: | :--------------------: | +| Arrow | `Dataset.save_to_disk()` | +| CSV | `Dataset.to_csv()` | +| JSON | `Dataset.to_json()` | + +Spre exemplu, hai să salvăm datasetul nostru curățat în formatul Arrow: + +```python +drug_dataset_clean.save_to_disk("drug-reviews") +``` + +Acest lucru va crea un folder cu următoarea structură: + +``` +drug-reviews/ +├── dataset_dict.json +├── test +│ ├── dataset.arrow +│ ├── dataset_info.json +│ └── state.json +├── train +│ ├── dataset.arrow +│ ├── dataset_info.json +│ ├── indices.arrow +│ └── state.json +└── validation + ├── dataset.arrow + ├── dataset_info.json + ├── indices.arrow + └── state.json +``` + +unde se poate vedea că fiecare split este asociat cu propriul său tabel `dataset.arrow`, iar unele metadate în `dataset_info.json` și `state.json`. Poți să te gândești la formatul Arrow ca fiind un tabel fancy de coloane și rânduri, optimizat pentru construirea aplicațiilor high-performance care procesează și transportă dataseturi mari. + +Odată ce setul de date este salvat, putem încărca-o folosind funcția `load_from_disk()` următoarea: + +```py +from datasets import load_from_disk + +drug_dataset_reloaded = load_from_disk("drug-reviews") +drug_dataset_reloaded +``` + +```python out +DatasetDict({ + train: Dataset({ + features: ['patient_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length'], + num_rows: 110811 + }) + validation: Dataset({ + features: ['patient_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length'], + num_rows: 27703 + }) + test: Dataset({ + features: ['patient_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length'], + num_rows: 46108 + }) +}) +``` + +Pentru formatele CSV și JSON, trebuie să stocați fiecare split într-un fișier separat. Un mod de a face acest lucru estw iterarea asupra cheilor și valorilor obiectului `DatasetDict`: + +```py +for split, dataset in drug_dataset_clean.items(): + dataset.to_json(f"drug-reviews-{split}.jsonl") +``` + +Acesta salvează fiecare split în [JSON Lines format](https://jsonlines.org), unde fiecare rând din setul de date este stocat ca o singură linie JSON. Aici puteți vedea cum arată primul exemplu: + +```bash +!head -n 1 drug-reviews-train.jsonl +``` + +```python out +{"patient_id":141780,"drugName":"Escitalopram","condition":"depression","review":"\"I seemed to experience the regular side effects of LEXAPRO, insomnia, low sex drive, sleepiness during the day. I am taking it at night because my doctor said if it made me tired to take it at night. I assumed it would and started out taking it at night. Strange dreams, some pleasant. I was diagnosed with fibromyalgia. Seems to be helping with the pain. Have had anxiety and depression in my family, and have tried quite a few other medications that haven't worked. Only have been on it for two weeks but feel more positive in my mind, want to accomplish more in my life. Hopefully the side effects will dwindle away, worth it to stick with it from hearing others responses. Great medication.\"","rating":9.0,"date":"May 29, 2011","usefulCount":10,"review_length":125} +``` + +Putem apoi folosi tehnicile de la [Secțiunea 2](/course/chapter5/2) pentru încărcarea fișierelor JSON: + +```py +data_files = { + "train": "drug-reviews-train.jsonl", + "validation": "drug-reviews-validation.jsonl", + "test": "drug-reviews-test.jsonl", +} +drug_dataset_reloaded = load_dataset("json", data_files=data_files) +``` + +Și ăsta este finalul excursiei noastre în lumea manipulării datelor cu 🤗 Datasets! Acum că avem un dataset curat, pregătit pentru antrenarea unui model, aici sunt câteva idei pe care le puteți încerca: + +1. Folosiți tehnicile din [Capitolul 3](/course/chapter3) pentru a antrena un classifier care poate prezice starea pacientului pe baza recenziei medicamentului. +2. Folosiți pipelineul `summarization` din [Capitolul 1](/course/chapter1) pentru a genera rezumate ale recenziilor. + +În următoarea secțiune, vom vedea cum 🤗 Datasets vă permite să lucrați cu dataseturi mari fără ca laptopul tău să explodeze :)! \ No newline at end of file diff --git a/chapters/rum/chapter5/4.mdx b/chapters/rum/chapter5/4.mdx new file mode 100644 index 000000000..9375a8af4 --- /dev/null +++ b/chapters/rum/chapter5/4.mdx @@ -0,0 +1,287 @@ +# Big data? 🤗 Datasets vine în ajutor![[big-data-datasets-to-the-rescue]] + + + +În prezent, nu este de neașteptat să te confrunți cu dataseturi de câțiva gigabytes, mai ales dacă planifici să preantreenezi un transformer ca BERT sau GPT-2 de la zero. În aceste cazuri, chiar _loading_ a datelor poate fi o provocare. De exemplu, corpusul WebText folosit pentru a preantreena GPT-2 conține peste 8 milioane de documente și 40 GB de text – încărcarea acestuia în memoria RAM a laptopului tău este probabil să-i facă un atac cardiac! + +Norocul este că Datasets 🤗 a fost proiectat pentru a depăși aceste limitări. El te eliberează de problemele de gestionare a memoriei, tratarea dataseturilor ca fișiere _memory-mapped_, și limitele hard driveului prin _streamingul_ intrărilor dintr-un corpus. + + + +În această secțiune vom explora aceste caracteristici ale 🤗Datasets cu un corpus de 825 GB numit [Pile](https://pile.eleuther.ai). Să începem! + +## Ce este Pile?[[what-is-the-pile]] + +Pile este un corpus de text englezesc creat de [EleutherAI](https://www.eleuther.ai) pentru antrenarea large-scale language models. Acesta include o varietate diversă de dataseturi, cuprinzând articole științifice, repositoriuri GitHub și texte web filtrate. Corpusul de antrenare este disponibil în chunkuri de [14 GB](https://the-eye.eu/public/AI/pile/), dar în același timp puteți descărca și câteva dintre [componenetele +individuale](https://the-eye.eu/public/AI/pile_preliminary_components/). Să începem prin examinarea datasetului PubMed Abstracts, care este un corpus de rezumate din 15 milioane de publicații științifice biomedicale de pe [PubMed](https://pubmed.ncbi.nlm.nih.gov/). Datasetul este în format JSON și este comprimat cu librăria `zstandard`, așadar prima dată ne trebuie să o instalăm pe aceasta: + +```py +!pip install zstandard +``` + +În continuare, putem încărca datasetul utilizând metoda pentru fișierele remote pe care am învățat-o în [secțiunea 2](/course/chapter5/2): + +```py +from datasets import load_dataset + +# Acest lucru durează câteva minute, așadar poți să te duci să îți iei un ceai sau o cafea între timp :)) +data_files = "https://the-eye.eu/public/AI/pile_preliminary_components/PUBMED_title_abstracts_2019_baseline.jsonl.zst" +pubmed_dataset = load_dataset("json", data_files=data_files, split="train") +pubmed_dataset +``` + +```python out +Dataset({ + features: ['meta', 'text'], + num_rows: 15518009 +}) +``` + +Putem observa că există 15.518.009 de linii și două coloane în datasetul nostru – e foarte mult! + + + +✎ De abia acum, 🤗 Datasets va descompresa fișierele necesare pentru încărcarea datasetului. Dacă doriți să salvați spațiu pe hard drive-ul dvs. , puteți transmite `DownloadConfig(delete_extracted=True)` la argumentul `download_config` al `load_dataset()`. Vedeți mai multe detalii în [documentație](https://huggingface.co/docs/datasets/package_reference/builder_classes#datasets.DownloadConfig). + + + +Acum hai să analizăm conținutul primei linii: + +```py +pubmed_dataset[0] +``` + +```python out +{'meta': {'pmid': 11409574, 'language': 'eng'}, + 'text': 'Epidemiology of hypoxaemia in children with acute lower respiratory infection.\nTo determine the prevalence of hypoxaemia in children aged under 5 years suffering acute lower respiratory infections (ALRI), the risk factors for hypoxaemia in children under 5 years of age with ALRI, and the association of hypoxaemia with an increased risk of dying in children of the same age ...'} +``` + +Okay, acesta pare a fi un rezumat dintr-un articol medical. Să vedem cât de mult spațiu RAM am folosit pentru încărcarea datasetului! + +## Magia memory mappingului[[the-magic-of-memory-mapping]] + +Una dintre modalitățile simple de măsurare a utilizării memoriei în Python este cu biblioteca `psutil`, care poate fi instalată cu `pip`: + +```python +!pip install psutil +``` + +Biblioteca oferă o clasă `Process` ce ne permite să verificăm utilizarea memoriei procesului curent astfel: + +```py +import psutil + +# Process.memory_info este exprimat în bytes, așadar convertim la megabyte +print(f"Utilizare RAM: {psutil.Process().memory_info().rss / (1024 * 1024):.2f} MB") +``` + +```python out +Utilizarea RAM: 5678.33 MB +``` + +Aici `rss` se referă la _resident set size_ , care este partea memoriei ocupată de proces în RAM. Această măsurare include și memoria folosită de Python interpreter și librariile pe care le-am încărcat, așadar cantitatea reală de memorie utilizată pentru încărcarea datelor este puțin mai mică. Pentru comparație, putem să vedem cât de mare este datasetul pe disc folosind atributul `dataset_size`. Deoarece rezultatul este exprimat în bytes, putem să îl convertim manual la gigabyte: + +```py +print(f"Number of files in dataset : {pubmed_dataset.dataset_size}") +size_gb = pubmed_dataset.dataset_size / (1024**3) +print(f"Dataset size (cache file) : {size_gb:.2f} GB") +``` + +```python out +Number of files in dataset : 20979437051 +Dataset size (cache file) : 19.54 GB +``` + + +Nice – deși este aproximativ 20 GB, putem încărca și accesa datasetul cu mult mai puțin RAM! + + + +✏️ **Încercați!** Alegeți una dintre [subseturile](https://the-eye.eu/public/AI/pile_preliminary_components/) din Pile care este mai mare decât memoria RAM a laptopului sau dispozitivului tău, încărcați-o cu 🤗 Datasets și măsurați cantitatea de memorie folosită. Pentru o măsurare precisă, veți dori să faceți acest lucru într-un proces nou. Puteți găsi dimensiunile decomprimate ale fiecărui subset în Tabelul 1 din [Pile paper](https://arxiv.org/abs/2101.00027). + + + +Dacă sunteți familiarizați cu Pandas, rezultatul acesta poate veni ca o surpriză din cauza celebrei [rule of thumbă](https://wesmckinney.com/blog/apache-arrow-pandas-internals/) al lui Wes Kinney, care spune că în mod normal aveți nevoie de 5 până la 10 ori mai mult spațiu pe RAM decât mărimea datasetului. Deci 🤗 Datasets această problemă de memory management? 🤗 Datasets tratează fiecare dataset ca un [memory-mapped file](https://en.wikipedia.org/wiki/Memory-mapped_file), care oferă un mapping între spațiul RAM și stocarea pe sistem, ceea ce permite bibliotecii să acceseze și să opereze asupra elementelor datasetului fără a trebui să-l încarce în totalitate în memorie. + +Memory-mapped files pot fi și distribuite între mai multe procese, ceea ce permite metodelor cum ar fi `Dataset.map()` să fie parallelized fără necesitatea mutării sau copierii datasetului. În spatele acestor facilități se află [formatul de memorie Apache Arrow](https://arrow.apache.org) și biblioteca [`pyarrow`](https://arrow.apache.org/docs/python/index.html), care realizează încărcarea datelor și procesarea la viteze fulgerătoare. (Pentru mai multe detalii despre Apache Arrow și compararea sa cu Pandas, vă rugăm să citiți [blogul lui Dejan Simic](https://towardsdatascience.com/apache-arrow-read-dataframe-with-zero-memory-69634092b1a).) Pentru a vedea acest lucru în acțiune, hai să încercăm un speed test prin iterarea asupra tuturor elementelor din datasetul PubMed Abstracts: + +```py +import timeit + +code_snippet = """batch_size = 1000 + +for idx in range(0, len(pubmed_dataset), batch_size): + _ = pubmed_dataset[idx:idx + batch_size] +""" + +time = timeit.timeit(stmt=code_snippet, number=1, globals=globals()) +print( + f"Iterated over {len(pubmed_dataset)} examples (about {size_gb:.1f} GB) in " + f"{time:.1f}s, i.e. {size_gb/time:.3f} GB/s" +) +``` + +```python out +'Iterated over 15518009 examples (about 19.5 GB) in 64.2s, i.e. 0.304 GB/s' +``` + +Aici am folosit modulul `timeit` al Python pentru a măsura timpul de execuție necesar pentru a rula `code_snippet`. În mod normal veți putea trece peste un dataset la viteze de câteva sute de MB/s până la câțiva GB/s. Acest lucru funcționează bine pentru majoritatea aplicațiilor, dar uneori veți avea nevoie să lucrați cu un dataset care este prea mare ca să încapă pe hard driveul laptopului tău. De exemplu, dacă am încerca să descarcăm Pile în întregime, am avea nevoie de 825 GB de spațiu liber! Pentru a vă ajuta cu astfel de cazuri, 🤗 Datasets oferă o feature de streaming care permite accesarea și descărcarea elementelor, fără a trebui să descărcați întregul dataset. Hai să vedem cum funcționează! + + + +💡În Jupyter notebooks poți să măsori timpul unei celule utilizând [funcția magică `%%timeit`](https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit). + + + +## Streamingul dataseturilor[[streaming-datasets]] + +Pentru a activa dataset streaming este suficient să dați argumentul `streaming=True` funcției `load_dataset()`. De exemplu, să încercăm să încărcăm datasetul PubMed Abstracts în streaming mode: + +```py +pubmed_dataset_streamed = load_dataset( + "json", data_files=data_files, split="train", streaming=True +) +``` + +În locul `Dataset`-ului obișnuit pe care l-am întâlnit până acum în acest capitol, obiectul returnat cu `streaming=True` este un `IterableDataset`. După nume putem deduce că pentru a accesa elementele dintr-un `IterableDataset`, trebuie să iterăm prin el. Prin urmare, putem accesa primul element al streamed datased astfel: + +```py +next(iter(pubmed_dataset_streamed)) +``` + +```python out +{'meta': {'pmid': 11409574, 'language': 'eng'}, + 'text': 'Epidemiology of hypoxaemia in children with acute lower respiratory infection.\nTo determine the prevalence of hypoxaemia in children aged under 5 years suffering acute lower respiratory infections (ALRI), the risk factors for hypoxaemia in children under 5 years of age with ALRI, and the association of hypoxaemia with an increased risk of dying in children of the same age ...'} +``` + +Elementele unui streamed dataset pot fi procesate din mers folosind `IterableDataset.map()`, ceea ce este util în timpul antrenării dacă aveți nevoie să tokenizeți inputurile. Procesarea se face exact la fel ca și în [Capitolul 3](/course/chapter3), cu singura deosebire fiind că rezultatele sunt returnate una câte una: + +```py +from transformers import AutoTokenizer + +tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") +tokenized_dataset = pubmed_dataset_streamed.map(lambda x: tokenizer(x["text"])) +next(iter(tokenized_dataset)) +``` + +```python out +{'input_ids': [101, 4958, 5178, 4328, 6779, ...], 'attention_mask': [1, 1, 1, 1, 1, ...]} +``` + + + +💡 Pentru a accelera tokenizarea cu streaming puteți seta `batched=True`, ca și în secțiunea precedentă. Acest lucru va procesa exemplele, batch cu batch; dimensiunea implicită a batchului este de 1,000 și poate fi specificată cu argumentul `batch_size`. + + + +De asemenea, puteți amesteca un streamed dataset utilizând `IterableDataset.shuffle()`, dar față de `Dataset.shuffle()` acest lucru va amesteca doar elementele dintr-un `buffer_size` predefinit: + +```py +shuffled_dataset = pubmed_dataset_streamed.shuffle(buffer_size=10_000, seed=42) +next(iter(shuffled_dataset)) +``` + +```python out +{'meta': {'pmid': 11410799, 'language': 'eng'}, + 'text': 'Randomized study of dose or schedule modification of granulocyte colony-stimulating factor in platinum-based chemotherapy for elderly patients with lung cancer ...'} +``` + +În acest exemplu, am selectat un exemplu aleatoriu din primele 10,000 exemple din buffer. Odată ce un exemplu este accesat, locul lui în buffer este completat cu următorul exemplu din corpus (adica exemplarul 10,001 în cazul de mai sus). Puteți selecta elemente dintr-un streamed dataset utilizând funcțiile `IterableDataset.take()` și `IterableDataset.skip()`, care acționează în mod similar cu `Dataset.select()`. De exemplu, pentru a selecta primele 5 exemple din PubMed Abstracts dataset putem face următorul lucru: + +```py +dataset_head = pubmed_dataset_streamed.take(5) +list(dataset_head) +``` + +```python out +[{'meta': {'pmid': 11409574, 'language': 'eng'}, + 'text': 'Epidemiology of hypoxaemia in children with acute lower respiratory infection ...'}, + {'meta': {'pmid': 11409575, 'language': 'eng'}, + 'text': 'Clinical signs of hypoxaemia in children with acute lower respiratory infection: indicators of oxygen therapy ...'}, + {'meta': {'pmid': 11409576, 'language': 'eng'}, + 'text': "Hypoxaemia in children with severe pneumonia in Papua New Guinea ..."}, + {'meta': {'pmid': 11409577, 'language': 'eng'}, + 'text': 'Oxygen concentrators and cylinders ...'}, + {'meta': {'pmid': 11409578, 'language': 'eng'}, + 'text': 'Oxygen supply in rural africa: a personal experience ...'}] +``` + +În mod similar puteți utiliza funcția `IterableDataset.skip()` pentru a crea splituri de antrenare și validare dintr-un set de date amestecat astfel: + +```py +# Săriți primele 1,000 exemple și includeți restul în setul de antrenare +train_dataset = shuffled_dataset.skip(1000) +# Luați primele 1,000 de exemple pentru setul de validare +validation_dataset = shuffled_dataset.take(1000) +``` + +Hai să terminăm explorarea streamingului asupra datasetului cu o aplicație comună: combinarea multiplelor dataseturi împreună pentru a crea un singur corpus. 🤗 Datasets oferă o funcție `interleave_datasets()` care convertește o listă de obiecte `IterableDataset` într-un singur `IterableDataset`, unde elementele noului datasetsunt obținute prin alternarea între exemplele sursă. Această funcție este utilă, în special atunci când încercați să combinați dataseturi mari, ca exemplu vom face stream al subsetul FreeLaw din Pile, care reprezintă un dataset de 51 GB de opinii juridice din instanțe din SUA: + +```py +law_dataset_streamed = load_dataset( + "json", + data_files="https://the-eye.eu/public/AI/pile_preliminary_components/FreeLaw_Opinions.jsonl.zst", + split="train", + streaming=True, +) +next(iter(law_dataset_streamed)) +``` + +```python out +{'meta': {'case_ID': '110921.json', + 'case_jurisdiction': 'scotus.tar.gz', + 'date_created': '2010-04-28T17:12:49Z'}, + 'text': '\n461 U.S. 238 (1983)\nOLIM ET AL.\nv.\nWAKINEKONA\nNo. 81-1581.\nSupreme Court of United States.\nArgued January 19, 1983.\nDecided April 26, 1983.\nCERTIORARI TO THE UNITED STATES COURT OF APPEALS FOR THE NINTH CIRCUIT\n*239 Michael A. Lilly, First Deputy Attorney General of Hawaii, argued the cause for petitioners. With him on the brief was James H. Dannenberg, Deputy Attorney General...'} +``` + +Această dataset este suficient de mare încât să pună presiune asupra RAM-ului a majorității laptopurilor, dar am reușit să îl încarcăm și să îl accesăm fără să ne facem griji. Acum hai să combinăm exemplele din dataseturile FreeLaw și PubMed Abstracts cu funcția `interleave_datasets()`: + +```py +from itertools import islice +from datasets import interleave_datasets + +combined_dataset = interleave_datasets([pubmed_dataset_streamed, law_dataset_streamed]) +list(islice(combined_dataset, 2)) +``` + +```python out +[{'meta': {'pmid': 11409574, 'language': 'eng'}, + 'text': 'Epidemiology of hypoxaemia in children with acute lower respiratory infection ...'}, + {'meta': {'case_ID': '110921.json', + 'case_jurisdiction': 'scotus.tar.gz', + 'date_created': '2010-04-28T17:12:49Z'}, + 'text': '\n461 U.S. 238 (1983)\nOLIM ET AL.\nv.\nWAKINEKONA\nNo. 81-1581.\nSupreme Court of United States.\nArgued January 19, 1983.\nDecided April 26, 1983.\nCERTIORARI TO THE UNITED STATES COURT OF APPEALS FOR THE NINTH CIRCUIT\n*239 Michael A. Lilly, First Deputy Attorney General of Hawaii, argued the cause for petitioners. With him on the brief was James H. Dannenberg, Deputy Attorney General...'}] +``` + +Aici am folosit funcția `islice()` din modulul Python `itertools` pentru a selecta primele două exemple din datasetul combinat, și putem vedea că acestea corespund primelor exemple din fiecare dintre cele două dataseturi originale. + +În final, dacă doriți să faceți streaming la Pile în întregime (825 GB), puteți rula toate fișierele pregătite după în acest mod: + +```py +base_url = "https://the-eye.eu/public/AI/pile/" +data_files = { + "train": [base_url + "train/" + f"{idx:02d}.jsonl.zst" for idx in range(30)], + "validation": base_url + "val.jsonl.zst", + "test": base_url + "test.jsonl.zst", +} +pile_dataset = load_dataset("json", data_files=data_files, streaming=True) +next(iter(pile_dataset["train"])) +``` + +```python out +{'meta': {'pile_set_name': 'Pile-CC'}, + 'text': 'It is done, and submitted. You can play “Survival of the Tastiest” on Android, and on the web...'} +``` + + + +✏️ **Încercați!** Utilizați unul dintre cele mari corpusuri Common Crawl ca [`mc4`](https://huggingface.co/datasets/mc4) sau [`oscar`](https://huggingface.co/datasets/oscar) pentru a crea un streaming dataset multilingv care reprezintă proporția limbii vorbite într-o țară aleasă de tine. De exemplu, cele patru limbi naționale din Elveția sunt germana, franceza, italiana și romansha, așadar puteți încerca să creați un corpus elvețian prin samplingul subseturilor Oscar în funcție de proporția lor vorbită. + + + +Acum aveți toate instrumentele necesare pentru a încărca și procesa dataseturi de orice formă și dimensiune – dar, din păcate, va veni un moment în care veți trebui să creați voi înșivă un dataset pentru a rezolva problema pe care o aveți. Acesta este subiectul următoarei secțiuni! diff --git a/chapters/rum/chapter5/5.mdx b/chapters/rum/chapter5/5.mdx new file mode 100644 index 000000000..ce2dbbbc7 --- /dev/null +++ b/chapters/rum/chapter5/5.mdx @@ -0,0 +1,404 @@ +# Crearea propriului tău dataset[[creating-your-own-dataset]] + + + +Uneori, datasetul necesar pentru a construi o aplicație NLP nu există, astfel încât veți trebui să-l creați singuri. În această secțiune vom arăta cum să creați un corpus de [GitHub issues](https://github.com/features/issues/), care sunt utilizate în mod obișnuit pentru a urmări erorile sau feature-urile din repositoriile GitHub. Acest corpus poate fi folosit pentru diverse scopuri, inclusiv: + +* Explorarea timpului necesar pentru închiderea unor issues deschise sau pull requesturi +* Antrenarea unui _multilabel classifier_ care poate eticheta issue-urile cu metadate pe baza descrierii issue-urilor (de exemplu, "bug", "enhancement" sau "question") +* Crearea unui motor de căutare semantică pentru a găsi care issues se potrivesc query-ului utilizatorului + +În această secțiune ne vom focusa pe crearea corpusului, și în următoarea vom aborda aplicația motorului de căutare semantic. Pentru a păstra lucrurile meta, vom folosi issue-urile GitHub asociate cu un proiect open source popular: 🤗 Datasets! Să vedem cum să obținem datele și să explorăm informațiile conținute în aceste issue-uri. + +## Obținerea datelor[[getting-the-data]] + +Puteți găsi toate issue-urile din 🤗 Datasets navigând către tabul [Issues](https://github.com/huggingface/datasets/issues) al repositorului. Așa cum arată următorul screenshot, la momentul scrierii acestui text existau 331 de issues deschise și 668 închise. + +
+Issue-urile GitHub asociate cu 🤗 Datasets. +
+ +Dacă ați da clic pe una dintre aceste issue-uri veți găsi că aceasta conține un titlu, o descriere și un set de labeluri care caracterizează issue-ul. Un exemplu este prezentat în screenshotul următor. + +
+Un issue tipic în GitHub din repositoriul 🤗 Datasets. +
+ +Pentru a descărca toate issue-urile din repositoriu, vom folosi [GitHub REST API](https://docs.github.com/en/rest) pentru a enumera [`Issues` endpoint](https://docs.github.com/en/rest/reference/issues#list-repository-issues). Aceast endpoint returnează o listă de obiecte JSON, cu fiecare obiect conținând un număr mare de câmpuri care includ titlul și descrierea precum și metadata despre starea issue-ului și așa mai departe. + +Un mod convenabil de descărcare a issue-urilor este prin utilizarea librăriei `requests`, care este modalitatea standard pentru a face cereri HTTP în Python. Puteți instala libraria rulând comanda: + +```python +!pip install requests +``` + +Odată cu instalarea librariei, puteți face cereri GET la `Issues` endpoint prin invocarea funcției `requests.get()`. De exemplu, puteți rula următorul cod pentru a obține primul issue din prima pagină: + +```py +import requests + +url = "https://api.github.com/repos/huggingface/datasets/issues?page=1&per_page=1" +response = requests.get(url) +``` + +Obiectul `response` conține o cantitate mare de informații utile despre requestul efectuat, inclusiv HTTP status code: + +```py +response.status_code +``` + +```python out +200 +``` + +unde statusul `200` înseamnă că cererea a fost reușită (puteți găsi o listă completă de status coduri [aici](https://en.wikipedia.org/wiki/List_of_HTTP_status_codes)). De ceea ce suntem însă interesați este _payload_, care poate fi accesat în diverse formaturi precum bytes, string sau JSON. Deoarece știm că issue-urile noastre sunt în format JSON, să inspectăm payload-ul astfel: + +```py +response.json() +``` + +```python out +[{'url': 'https://api.github.com/repos/huggingface/datasets/issues/2792', + 'repository_url': 'https://api.github.com/repos/huggingface/datasets', + 'labels_url': 'https://api.github.com/repos/huggingface/datasets/issues/2792/labels{/name}', + 'comments_url': 'https://api.github.com/repos/huggingface/datasets/issues/2792/comments', + 'events_url': 'https://api.github.com/repos/huggingface/datasets/issues/2792/events', + 'html_url': 'https://github.com/huggingface/datasets/pull/2792', + 'id': 968650274, + 'node_id': 'MDExOlB1bGxSZXF1ZXN0NzEwNzUyMjc0', + 'number': 2792, + 'title': 'Update GooAQ', + 'user': {'login': 'bhavitvyamalik', + 'id': 19718818, + 'node_id': 'MDQ6VXNlcjE5NzE4ODE4', + 'avatar_url': 'https://avatars.githubusercontent.com/u/19718818?v=4', + 'gravatar_id': '', + 'url': 'https://api.github.com/users/bhavitvyamalik', + 'html_url': 'https://github.com/bhavitvyamalik', + 'followers_url': 'https://api.github.com/users/bhavitvyamalik/followers', + 'following_url': 'https://api.github.com/users/bhavitvyamalik/following{/other_user}', + 'gists_url': 'https://api.github.com/users/bhavitvyamalik/gists{/gist_id}', + 'starred_url': 'https://api.github.com/users/bhavitvyamalik/starred{/owner}{/repo}', + 'subscriptions_url': 'https://api.github.com/users/bhavitvyamalik/subscriptions', + 'organizations_url': 'https://api.github.com/users/bhavitvyamalik/orgs', + 'repos_url': 'https://api.github.com/users/bhavitvyamalik/repos', + 'events_url': 'https://api.github.com/users/bhavitvyamalik/events{/privacy}', + 'received_events_url': 'https://api.github.com/users/bhavitvyamalik/received_events', + 'type': 'User', + 'site_admin': False}, + 'labels': [], + 'state': 'open', + 'locked': False, + 'assignee': None, + 'assignees': [], + 'milestone': None, + 'comments': 1, + 'created_at': '2021-08-12T11:40:18Z', + 'updated_at': '2021-08-12T12:31:17Z', + 'closed_at': None, + 'author_association': 'CONTRIBUTOR', + 'active_lock_reason': None, + 'pull_request': {'url': 'https://api.github.com/repos/huggingface/datasets/pulls/2792', + 'html_url': 'https://github.com/huggingface/datasets/pull/2792', + 'diff_url': 'https://github.com/huggingface/datasets/pull/2792.diff', + 'patch_url': 'https://github.com/huggingface/datasets/pull/2792.patch'}, + 'body': '[GooAQ](https://github.com/allenai/gooaq) dataset was recently updated after splits were added for the same. This PR contains new updated GooAQ with train/val/test splits and updated README as well.', + 'performed_via_github_app': None}] +``` + +Uau, aceasta e o cantitate mare de informație! Putem vedea câmpuri utile cum ar fi `title`, `body` și `number` care descriu problema, precum și informații despre utilizatorul GitHub care a deschis issue-ul. + + + +✏️ **Încercați!** Faceți clic pe câteva dintre URL-urile din payload-ul JSON de mai sus pentru a vă familiariza cu tipul de informații către care se face referire pentru fiecare GitHub issue. + + + +După cum este descris în [documentația](https://docs.github.com/en/rest/overview/resources-in-the-rest-api#rate-limiting) GitHub, solicitările neautentificate sunt limitate la 60 de solicitări pe oră. Deși puteți crește `per_page` query parameter pentru a reduce numărul de solicitări pe care le faceți, oricum veți atinge limita pentru orice repository care are mai mult de câteva mii de issues. Prin urmare, ar trebui să urmați [instrucțiunile](https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token) GitHub pentru crearea unui _personal access token_ astfel încât să puteți crește limita la 5.000 de solicitări pe oră. Odată ce aveți tokenul, îl puteți include ca parte a request header: + +```py +GITHUB_TOKEN = xxx # Copy your GitHub token here +headers = {"Authorization": f"token {GITHUB_TOKEN}"} +``` + + + +⚠️ Nu oferiți nimănui un notebook cu `GITHUB_TOKEN` în el . Vă recomandăm să ștergeți ultima celulă odată ce ați executat-o pentru a evita scurgerea accidentală a acestor informații. Chiar mai bine, stocați tokenul într-un fișier *.env* și utilizați biblioteca `python-dotenv` pentru a îl încărca automat ca variabilă de mediu. + + + +Acum că avem tokenul de acces, hai să creăm o funcție care să poată descărca toate issue-urile dintr-un repositoriu GitHub: + +```py +import time +import math +from pathlib import Path +import pandas as pd +from tqdm.notebook import tqdm + + +def fetch_issues( + owner="huggingface", + repo="datasets", + num_issues=10_000, + rate_limit=5_000, + issues_path=Path("."), +): + if not issues_path.is_dir(): + issues_path.mkdir(exist_ok=True) + + batch = [] + all_issues = [] + per_page = 100 # Number of issues to return per page + num_pages = math.ceil(num_issues / per_page) + base_url = "https://api.github.com/repos" + + for page in tqdm(range(num_pages)): + # Query with state=all to get both open and closed issues + query = f"issues?page={page}&per_page={per_page}&state=all" + issues = requests.get(f"{base_url}/{owner}/{repo}/{query}", headers=headers) + batch.extend(issues.json()) + + if len(batch) > rate_limit and len(all_issues) < num_issues: + all_issues.extend(batch) + batch = [] # Flush batch for next time period + print(f"Reached GitHub rate limit. Sleeping for one hour ...") + time.sleep(60 * 60 + 1) + + all_issues.extend(batch) + df = pd.DataFrame.from_records(all_issues) + df.to_json(f"{issues_path}/{repo}-issues.jsonl", orient="records", lines=True) + print( + f"Downloaded all the issues for {repo}! Dataset stored at {issues_path}/{repo}-issues.jsonl" + ) +``` + +Acum când apelăm `fetch_issues()` va descărca toate problemele în batch-uri pentru a evita depășirea limitei GitHub pe numărul de solicitări pe oră; rezultatul va fi stocat într-un fișier `_repository_name-issues.jsonl`, unde fiecare linie este un obiect JSON care reprezintă un issue. Mai jos folosim această funcție pentru a obține toate issue-urile de la 🤗 Datasets: + +```py +# În dependență de conexiunea ta la internet, acest lucru poate dura câteva minute... +fetch_issues() +``` + +Odată ce issue-urile sunt descărcate, le putem încărca local utilizând abilitățile noastre dobândite în [secțiunea 2](/course/chapter5/2): + +```py +issues_dataset = load_dataset("json", data_files="datasets-issues.jsonl", split="train") +issues_dataset +``` + +```python out +Dataset({ + features: ['url', 'repository_url', 'labels_url', 'comments_url', 'events_url', 'html_url', 'id', 'node_id', 'number', 'title', 'user', 'labels', 'state', 'locked', 'assignee', 'assignees', 'milestone', 'comments', 'created_at', 'updated_at', 'closed_at', 'author_association', 'active_lock_reason', 'pull_request', 'body', 'timeline_url', 'performed_via_github_app'], + num_rows: 3019 +}) +``` + +Great, am creat primul nostru dataset de la zero! Dar de ce sunt mai mult de câteva mii de issue-uri atunci când tabul de issue-uri al repositoriului 🤗 Datasets afișează doar aproximativ 1.000 de issue-uri în total 🤔? Conform descris în [documentația](https://docs.github.com/en/rest/reference/issues#list-issues-assigned-to-the-authenticated-user) GitHub, acest lucru s-a întâmplat pentru că am descărcat și toate pull requesturile: + +> GitHub's REST API v3 considers every pull request an issue, but not every issue is a pull request. For this reason, "Issues" endpoints may return both issues and pull requests in the response. You can identify pull requests by the `pull_request` key. Be aware that the `id` of a pull request returned from "Issues" endpoints will be an issue id. + +Deoarece conținutul issue-urilor și pull requesturilor este destul de diferit, hai să preprocesăm puțin datele pentru a ne permite să le diferențiem între ele. + +## Curățarea datelor[[cleaning-up-the-data]] + +Fragmentul de mai sus din documentația GitHub ne spune că coloana `pull_request` poate fi utilizată pentru a diferenția între issues și pull requests. Să analizăm un sampple aleatoriu pentru a vedea care este diferența. Așa cum am făcut în [secțiunea 3](/course/chapter5/3), vom înlănțui `Dataset.shuffle()` și `Dataset.select()` pentru a crea un sample aleatoriu și apoi vom împerechea coloanele `html_url` și `pull_request` pentru a putea compara diversele URL-uri: + +```py +sample = issues_dataset.shuffle(seed=666).select(range(3)) + +# Print out the URL and pull request entries +for url, pr in zip(sample["html_url"], sample["pull_request"]): + print(f">> URL: {url}") + print(f">> Pull request: {pr}\n") +``` + +```python out +>> URL: https://github.com/huggingface/datasets/pull/850 +>> Pull request: {'url': 'https://api.github.com/repos/huggingface/datasets/pulls/850', 'html_url': 'https://github.com/huggingface/datasets/pull/850', 'diff_url': 'https://github.com/huggingface/datasets/pull/850.diff', 'patch_url': 'https://github.com/huggingface/datasets/pull/850.patch'} + +>> URL: https://github.com/huggingface/datasets/issues/2773 +>> Pull request: None + +>> URL: https://github.com/huggingface/datasets/pull/783 +>> Pull request: {'url': 'https://api.github.com/repos/huggingface/datasets/pulls/783', 'html_url': 'https://github.com/huggingface/datasets/pull/783', 'diff_url': 'https://github.com/huggingface/datasets/pull/783.diff', 'patch_url': 'https://github.com/huggingface/datasets/pull/783.patch'} +``` + +Aici putem vedea că fiecare pull request este asociat cu diverse URL-uri, în timp ce issue-urile obișnuite au o intrare `None`. Putem utiliza această distincție pentru a crea o nouă coloană `is_pull_request` care verifică dacă câmpul `pull_request` este `None` sau nu: + +```py +issues_dataset = issues_dataset.map( + lambda x: {"is_pull_request": False if x["pull_request"] is None else True} +) +``` + + + +✏️ **Încercați!** Calculați timpul mediu necesar pentru închiderea issue-urilor în Datasets. Vă poate fi utilă funcția `Dataset.filter()` pentru a filtra pull requesturile și issue-urile deschise, și puteți utiliza funcția `Dataset.set_format()` pentru a converti datasetul într-un `DataFrame` astfel încât să puteți manipula cu ușurință timestampurile `created_at` și `closed_at`. Pentru puncte bonus, calculați timpul mediu necesar pentru închiderea pull requesturilor. + + + +Deși am putea continua să curățăm datasetul prin eliminarea sau redenumirea unor coloane, este, în general, o practică bună să păstrăm datasetul cât mai "raw" posibil la acest stadiu, astfel încât să poată fi utilizat ușor în multiple aplicații. + +Înainte de a încărca datasetul în Hugging Face Hub, trebuie să rezolvăm chestie care lipsește din el: comentariile asociate fiecărui issue și pull request. Le vom adăuga în continuare cu-- ați ghicit -- GitHub REST API! + +## Îmbunătățirea datasetului[[augmenting-the-dataset]] + +După cum se vede în următorul screenshot, comentariile asociate unui issue sau pull request oferă o sursă bogată de informații, în special dacă suntem interesați să construim un motor de căutare pentru a răspunde la întrebările utilizatorilor despre bibliotecă. + +
+Comentariile asociate unei probleme despre 🤗 Datasets. +
+ +GitHub REST API oferă un endpoint [`Comments`](https://docs.github.com/en/rest/reference/issues#list-issue-comments) care returnează toate comentariile asociate numărului problemei. Să testăm endpointul pentru a vedea ce returnează: + +```py +issue_number = 2792 +url = f"https://api.github.com/repos/huggingface/datasets/issues/{issue_number}/comments" +response = requests.get(url, headers=headers) +response.json() +``` + +```python out +[{'url': 'https://api.github.com/repos/huggingface/datasets/issues/comments/897594128', + 'html_url': 'https://github.com/huggingface/datasets/pull/2792#issuecomment-897594128', + 'issue_url': 'https://api.github.com/repos/huggingface/datasets/issues/2792', + 'id': 897594128, + 'node_id': 'IC_kwDODunzps41gDMQ', + 'user': {'login': 'bhavitvyamalik', + 'id': 19718818, + 'node_id': 'MDQ6VXNlcjE5NzE4ODE4', + 'avatar_url': 'https://avatars.githubusercontent.com/u/19718818?v=4', + 'gravatar_id': '', + 'url': 'https://api.github.com/users/bhavitvyamalik', + 'html_url': 'https://github.com/bhavitvyamalik', + 'followers_url': 'https://api.github.com/users/bhavitvyamalik/followers', + 'following_url': 'https://api.github.com/users/bhavitvyamalik/following{/other_user}', + 'gists_url': 'https://api.github.com/users/bhavitvyamalik/gists{/gist_id}', + 'starred_url': 'https://api.github.com/users/bhavitvyamalik/starred{/owner}{/repo}', + 'subscriptions_url': 'https://api.github.com/users/bhavitvyamalik/subscriptions', + 'organizations_url': 'https://api.github.com/users/bhavitvyamalik/orgs', + 'repos_url': 'https://api.github.com/users/bhavitvyamalik/repos', + 'events_url': 'https://api.github.com/users/bhavitvyamalik/events{/privacy}', + 'received_events_url': 'https://api.github.com/users/bhavitvyamalik/received_events', + 'type': 'User', + 'site_admin': False}, + 'created_at': '2021-08-12T12:21:52Z', + 'updated_at': '2021-08-12T12:31:17Z', + 'author_association': 'CONTRIBUTOR', + 'body': "@albertvillanova my tests are failing here:\r\n```\r\ndataset_name = 'gooaq'\r\n\r\n def test_load_dataset(self, dataset_name):\r\n configs = self.dataset_tester.load_all_configs(dataset_name, is_local=True)[:1]\r\n> self.dataset_tester.check_load_dataset(dataset_name, configs, is_local=True, use_local_dummy_data=True)\r\n\r\ntests/test_dataset_common.py:234: \r\n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \r\ntests/test_dataset_common.py:187: in check_load_dataset\r\n self.parent.assertTrue(len(dataset[split]) > 0)\r\nE AssertionError: False is not true\r\n```\r\nWhen I try loading dataset on local machine it works fine. Any suggestions on how can I avoid this error?", + 'performed_via_github_app': None}] +``` + +Putem vedea că comentariul este stocat în câmpul `body`, așa că putem scrie o funcție simplă care returnează toate comentariile asociate unei probleme prin extragerea conținutului `body` pentru fiecare element în `response.json()`: + +```py +def get_comments(issue_number): + url = f"https://api.github.com/repos/huggingface/datasets/issues/{issue_number}/comments" + response = requests.get(url, headers=headers) + return [r["body"] for r in response.json()] + + +# Testăm dacă funcția lucrează cum ne dorim +get_comments(2792) +``` + +```python out +["@albertvillanova my tests are failing here:\r\n```\r\ndataset_name = 'gooaq'\r\n\r\n def test_load_dataset(self, dataset_name):\r\n configs = self.dataset_tester.load_all_configs(dataset_name, is_local=True)[:1]\r\n> self.dataset_tester.check_load_dataset(dataset_name, configs, is_local=True, use_local_dummy_data=True)\r\n\r\ntests/test_dataset_common.py:234: \r\n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \r\ntests/test_dataset_common.py:187: in check_load_dataset\r\n self.parent.assertTrue(len(dataset[split]) > 0)\r\nE AssertionError: False is not true\r\n```\r\nWhen I try loading dataset on local machine it works fine. Any suggestions on how can I avoid this error?"] +``` + +Arată bine. Acum hai să folosim `Dataset.map()` pentru a adăuga noi coloane `comments` fiecărui issue în datasetul nostru: + +```py +# Depending on your internet connection, this can take a few minutes... +issues_with_comments_dataset = issues_dataset.map( + lambda x: {"comments": get_comments(x["number"])} +) +``` + +Ultimul pas este să facem push datasetului nostru pe Hub. Să vedem cum putem face asta. + +## Încărcarea datasetului pe Hugging Face Hub[[uploading-the-dataset-to-the-hugging-face-hub]] + + + +Acum că avem datasetul nostru augmentat, este timpul să îi facem push pe Hub pentru a-l oferi comunității! Încărcarea unui dataset este foarte simplu: la fel ca modelele și tokenizerrii din 🤗 Transformers, putem utiliza o metodă `push_to_hub()` pentru a face push unui dataset. Pentru a face asta, avem nevoie de un token de autentificare, care poate fi obținut prin autentificarea pe Hugging Face Hub cu funcția `notebook_login()`: + +```py +from huggingface_hub import notebook_login + +notebook_login() +``` + +Acest lucru va crea un widget unde poți să scrii usernameul și parola ta, iar un API token va fi salvat în *~/.huggingface/token*. Dacă rulezi codeul într-un terminal, te poți loga cu ajutor CLI: +This will create a widget where you can enter your username and password, and an API token will be saved in *~/.huggingface/token*. If you're running the code in a terminal, you can log in via the CLI instead: + +```bash +huggingface-cli login +``` +O dată ce ai făcut asta, putem încărca datasetul rulând: + +```py +issues_with_comments_dataset.push_to_hub("github-issues") +``` + +De acum, orice poate să descarce datasetul, utilizând `load_dataset()` cu ID-ul repositoriului ca `path` argument: + +```py +remote_dataset = load_dataset("lewtun/github-issues", split="train") +remote_dataset +``` + +```python out +Dataset({ + features: ['url', 'repository_url', 'labels_url', 'comments_url', 'events_url', 'html_url', 'id', 'node_id', 'number', 'title', 'user', 'labels', 'state', 'locked', 'assignee', 'assignees', 'milestone', 'comments', 'created_at', 'updated_at', 'closed_at', 'author_association', 'active_lock_reason', 'pull_request', 'body', 'performed_via_github_app', 'is_pull_request'], + num_rows: 2855 +}) +``` + +Cool, am încărcat datasetul nostru pe Hub și acum este disponibil pentru alții să îl utilizeze! Mai este doar un lucru important de făcut: adăugarea unui _dataset card_ care explică cum a fost creat corpusul și oferă alte informații utile pentru comunitate. + + + +💡 De asemenea, puteți încărca un dataset pe Hugging Face Hub direct din terminal utilizând `huggingface-cli` și puțină magie Git. Consultați [ghidul 🤗 Datasets](https://huggingface.co/docs/datasets/share#share-a-dataset-using-the-cli) pentru detalii despre cum puteți face asta. + + + +## Crearea unei dataset card[[creating-a-dataset-card]] + +Datasetiroșe bine documentate sunt mai probabil să fie utile altora (inclusiv ție din viitor!), deoarece furnizează contextul pentru a permite utilizatorilor să decidă dacă datasetul este relevant pentru taskul lor și să evalueze eventualele biasuri sau riscurile asociate cu utilizarea datasetului. + +Pe Hugging Face Hub, această informație este stocată în fișierul *README.md* al fiecărui dataset repository. Sunt doi pași principali pe care trebuie să îi efectuați înainte de a crea acest fișier: + +1. Utilizați aplicația [`datasets-tagging`](https://huggingface.co/datasets/tagging/) pentru a crea etichete de metadate în format YAML. Aceste taguri sunt utilizate pentru o varietate de funcționalități de căutare pe Hugging Face Hub și asigură că datasetul poate fi găsit ușor de membrii comunității. Deoarece am creat un dataset custom aici, veți fi nevoiți să clonați repositoriul `datasets-tagging` și să rulați aplicația local. Iată cum arată interfața: + +
+Interfața `datasets-tagging`. +
+ +2. Citiți [ghidul 🤗 Datasets](https://github.com/huggingface/datasets/blob/master/templates/README_guide.md) despre crearea de dataset cards informative și utilizați-l ca șablon. + +Puteți crea fișierul *README.md* direct pe Hub și puteți găsi un template pentru dataset card în repositoriul `lewtun/github-issues`. Un screenshot a dataset card completată este afișată mai jos. + +
+Dataset card. +
+ + + +✏️ **Încercați!** Utilizați aplicația `dataset-tagging` și [ghidul 🤗 Datasets](https://github.com/huggingface/datasets/blob/master/templates/README_guide.md) pentru a completa fișierul *README.md* pentru datasetul de probleme GitHub. + + + +Astfel, am văzut în această secțiune că crearea unui dataset bun poate fi destul de complicată, dar, spre norocul nsotru, încărcarea și oferirea acestuia comunității nu sunt. În secțiunea următoare, vom utiliza datasetul nou pentru a crea un motor de căutare semantic cu 🤗 Datasets care poate să asocieze întrebări cu cele mai relevante issues și comentarii. + + + +✏️ **Încercați!** Treceți prin pașii pe care i-am făcut în această secțiune pentru a crea un dataset de issues GitHub pentru o biblioteca open source care îți place(alegeți altceva înafară de 🤗 Datasets, desigur!). Pentru puncte bonus, faceți fine-tune unui multilabel classifier pentru a prezice tagurile prezente în câmpul `labels`. + + diff --git a/chapters/rum/chapter5/6.mdx b/chapters/rum/chapter5/6.mdx new file mode 100644 index 000000000..2fce7ed1e --- /dev/null +++ b/chapters/rum/chapter5/6.mdx @@ -0,0 +1,517 @@ + + +# Căutare semantică cu FAISS[[semantic-search-with-faiss]] + +{#if fw === 'pt'} + + + +{:else} + + + +{/if} + +În [secțiunea 5](/course/chapter5/5), am creat un dataset cu issues și comentarii din repositoriul 🤗 Datasets. În această secțiune, vom utiliza aceste informații pentru a construi un motor de căutare care ne poate ajuta să găsim răspunsurile la cele mai importante cele mai importante întrebări despre bibliotecă! + + + +## Utilizarea embeddings pentru căutare semantică[[using-embeddings-for-semantic-search]] + +După cum am văzut în [Capitolul 1](/course/chapter1), Transformer-based language models reprezintă fiecare token într-un fragment de text ca un _embedding vector_. S-a dovedit că se poate face "pool" embeddingurilor individuale pentru a crea o reprezentare vectorială pentru fraze întregi, paragrafe sau (în anumite cazuri) documente. Aceste embeddings pot fi apoi utilizate pentru a găsi documente similare în corpus prin calcularea dot-product similarity (sau a unei alte metrice de similaritate) între fiecare embedding și returnarea documentelor cu cea mai mare suprapunere. + +În această secțiune, vom utiliza embeddings pentru a dezvolta un motor de căutare semantică. Aceste motoare de căutare oferă mai multe avantaje față de abordările convenționale bazate pe căutarea de cuvinte cheie într-un query cu documente. + +
+Căutare semantică. + +
+ +## Încărcarea și pregătirea datasetului[[loading-and-preparing-the-dataset]] + +Prima lucru pe care trebuie să îl facem este să descărcăm datasetul nostru cu GitHub issues, așa că folosim funcția `load_dataset()` ca de obicei: + +```py +from datasets import load_dataset + +issues_dataset = load_dataset("lewtun/github-issues", split="train") +issues_dataset +``` + +```python out +Dataset({ + features: ['url', 'repository_url', 'labels_url', 'comments_url', 'events_url', 'html_url', 'id', 'node_id', 'number', 'title', 'user', 'labels', 'state', 'locked', 'assignee', 'assignees', 'milestone', 'comments', 'created_at', 'updated_at', 'closed_at', 'author_association', 'active_lock_reason', 'pull_request', 'body', 'performed_via_github_app', 'is_pull_request'], + num_rows: 2855 +}) +``` + +Aici am specificat splitul default `train` în `load_dataset()`, astfel încât returnează un `Dataset` în loc de `DatasetDict`. Primul lucru care treubuie făcut este să filtrăm pull requesturile, deoarece acestea rareori tind să fie utilizate pentru a răspunde la întrebările utilizatorilor și vor introduce noise în motorul nostru de căutare. Așa cum ar trebuie deja să știți, putem utiliza funcția `Dataset.filter()` pentru a exclude aceste rânduri din datasetul nostru. În timp ce suntem aici, putem să filtrăm și rândurile fără comentari, deoarece acestea nu oferă niciun răspuns la întrebările utilizatorilor: + +```py +issues_dataset = issues_dataset.filter( + lambda x: (x["is_pull_request"] == False and len(x["comments"]) > 0) +) +issues_dataset +``` + +```python out +Dataset({ + caracteristici: ['url', 'repository_url', 'labels_url', 'comments_url', 'events_url', 'html_url', 'id', 'node_id', 'number', 'title', 'user', 'labels', 'state', 'locked', 'assignee', 'assignees', 'milestone', 'comments', 'created_at', 'updated_at', 'closed_at', 'author_association', 'active_lock_reason', 'pull_request', 'body', 'performed_via_github_app', 'is_pull_request'], + num_rows: 771 +}) +``` + +Putem vedea că există multe coloane în datasetul nostru, majoritatea dintre care nu sunt necesare pentru a construi motorul nostru de căutare. Din perspectiva căutării, cele mai informative coloane sunt `title`, `body` și `comments`, în timp ce `html_url` ne oferă un link înapoi la problema sursă. Hai să utilizăm funcția `Dataset.remove_columns()` pentru a elimina restul: + +```py +columns = issues_dataset.column_names +columns_to_keep = ["title", "body", "html_url", "comments"] +columns_to_remove = set(columns_to_keep).symmetric_difference(columns) +issues_dataset = issues_dataset.remove_columns(columns_to_remove) +issues_dataset +``` + +```python out +Dataset({ + features: ['html_url', 'title', 'comments', 'body'], + num_rows: 771 +}) +``` + +Pentru a crea embeddedurile noastre, vom completa fiecare comentariu cu titlul și body-ul problemei, deoarece aceste câmpuri adesea includ informații contextuale utile. Deoarece coloana noastră `comments` este în prezent o listă de comentarii pentru fiecare issue, trebuie să "explodăm" coloana, astfel încât fiecare rând să fie format dintr-un tuple `(html_url, title, body, comment)`. În Pandas, putem face acest lucru cu funcția [`DataFrame.explode()`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.explode.html), care creează un rând nou pentru fiecare element dintr-o coloană asemănătoare cu o listă, în timp ce copiază toate celelalte valori ale coloanelor. Pentru a vedea acest lucru în acțiune, să trecem la formatul pandas `DataFrame` mai întâi: + +```py +issues_dataset.set_format("pandas") +df = issues_dataset[:] +``` + +Dacă inspectăm primul rând din acest `DataFrame`, putem vedea că există patru comentarii asociate acestei probleme: + +```py +df["comments"][0].tolist() +``` + +```python out +['the bug code locate in :\r\n if data_args.task_name is not None:\r\n # Downloading and loading a dataset from the hub.\r\n datasets = load_dataset("glue", data_args.task_name, cache_dir=model_args.cache_dir)', + 'Hi @jinec,\r\n\r\nFrom time to time we get this kind of `ConnectionError` coming from the github.com website: https://raw.githubusercontent.com\r\n\r\nNormally, it should work if you wait a little and then retry.\r\n\r\nCould you please confirm if the problem persists?', + 'cannot connect,even by Web browser,please check that there is some problems。', + 'I can access https://raw.githubusercontent.com/huggingface/datasets/1.7.0/datasets/glue/glue.py without problem...'] +``` + +Când facem explode `df`, ne așteptăm să obținem un rând pentru fiecare dintre aceste comentarii. Haideți să verificăm dacă ăsta e cazul: + +```py +comments_df = df.explode("comments", ignore_index=True) +comments_df.head(4) +``` + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
html_urltitlecommentsbody
0https://github.com/huggingface/datasets/issues/2787ConnectionError: Couldn't reach https://raw.githubusercontent.comthe bug code locate in :\r\n if data_args.task_name is not None...Hello,\r\nI am trying to run run_glue.py and it gives me this error...
1https://github.com/huggingface/datasets/issues/2787ConnectionError: Couldn't reach https://raw.githubusercontent.comHi @jinec,\r\n\r\nFrom time to time we get this kind of `ConnectionError` coming from the github.com website: https://raw.githubusercontent.com...Hello,\r\nI am trying to run run_glue.py and it gives me this error...
2https://github.com/huggingface/datasets/issues/2787ConnectionError: Couldn't reach https://raw.githubusercontent.comcannot connect,even by Web browser,please check that there is some problems。Hello,\r\nI am trying to run run_glue.py and it gives me this error...
3https://github.com/huggingface/datasets/issues/2787ConnectionError: Couldn't reach https://raw.githubusercontent.comI can access https://raw.githubusercontent.com/huggingface/datasets/1.7.0/datasets/glue/glue.py without problem...Hello,\r\nI am trying to run run_glue.py and it gives me this error...
+ +Great, putem vedea că rândurile au fost reproduse, cu coloanele `comments` incluzând și comentariile individuale. Acum că am terminat cu Pandas, noi putem să schimăm rapid înapoi la un `Dataset` înărcând `DataFrame` în memorie: + +```py +from datasets import Dataset + +comments_dataset = Dataset.from_pandas(comments_df) +comments_dataset +``` + +```python out +Dataset({ + features: ['html_url', 'title', 'comments', 'body'], + num_rows: 2842 +}) +``` + +Okay, acest lucru ne-a oferit câteva mii de comentarii cu care să lucrăm! + + + + +✏️ **Încercați!** Vezi dacă poți utiliza `Dataset.map()` pentru a exploda coloana `comments` din `issues_dataset` _fără_ a recurge la utilizarea Pandas. Acest lucru este puțin dificil; s-ar putea să găsiți utilă secțiunea ["Mapping batch"](https://huggingface.co/docs/datasets/about_map_batch#batch-mapping) din documentația 🤗 Datasets pentru această sarcină. + + + +Acum că avem un singur comentariu pe rând, să creăm o nouă coloană `comments_length` care conține numărul de cuvinte din fiecare comentariu: + +```py +comments_dataset = comments_dataset.map( + lambda x: {"comment_length": len(x["comments"].split())} +) +``` + +Putem utiliza această nouă coloană pentru a filtra comentariile scurte, care de obicei includ lucruri precum "cc @lewtun" sau "Mulțumesc!" care nu sunt relevante pentru motorul nostru de căutare. Nu există un număr precis care trebuie selectat pentru filtru, dar aproximativ 15 cuvinte pare a fi un bun punct de plecare: + +```py +comments_dataset = comments_dataset.filter(lambda x: x["comment_length"] > 15) +comments_dataset +``` + +```python out +Dataset({ + features: ['html_url', 'title', 'comments', 'body', 'comment_length'], + num_rows: 2098 +}) +``` + +După ce am curățat puțin setul nostru de date, putem să concatenăm titlul, descrirea și comentariile problemei împreună într-o nouă coloană `text`. Ca de obicei, vom scrie o funcție simplă pe care o putem transmite în `Dataset.map()`: + +```py +def concatenate_text(examples): + return { + "text": examples["title"] + + " \n " + + examples["body"] + + " \n " + + examples["comments"] + } + + +comments_dataset = comments_dataset.map(concatenate_text) +``` + +Suntem în final pregătiți să creăm niște embeddings! Haideți să vedem cum facem acest lucru. + +## Crearea embeddings-urilor de text [[creating-text-embeddings]] + +Am văzut în [Capitolul 2](/course/chapter2) că putem obține token embeddings prin utilizarea clasei `AutoModel`. Tot ce trebuie să facem este să alegem un checkpoint potrivit pentru a încărca modelul. Din fericire, există o bibliotecă numită `sentence-transformers` care se ocupă de crearea embeddingurilor. Așa cum se descrie în [documentația](https://www.sbert.net/examples/applications/semantic-search/README.html#symmetric-vs-asymmetric-semantic-search) bibliotecii, cazul nostru este un exemplu de _căutare semantică asimetrică_ deoarece avem o întrebare scurtă al cărei răspuns ne-ar plăcea să îl găsim într-un document mai lung, precum un comentariu la un issue. [Tabelul] (https://www.sbert.net/docs/pretrained_models.html#model-overview) util de prezentare a modelului din documentație indică faptul că checkpointul `multi-qa-mpnet-base-dot-v1` are cea mai bună performanță pentru căutarea semantică, așa că îl vom folosi acesta pentru aplicația noastră. De asemenea, vom încărca tokenizer-ul folosind același checkpoint: + +{#if fw === 'pt'} + +```py +from transformers import AutoTokenizer, AutoModel + +model_ckpt = "sentence-transformers/multi-qa-mpnet-base-dot-v1" +tokenizer = AutoTokenizer.from_pretrained(model_ckpt) +model = AutoModel.from_pretrained(model_ckpt) +``` + +Pentru a accelera procesul de embedding, este util să punem modelul și inputurile pe un GPU, deci hai să facem asta acum: + +```py +import torch + +device = torch.device("cuda") +model.to(device) +``` + +{:else} + +```py +from transformers import AutoTokenizer, TFAutoModel + +model_ckpt = "sentence-transformers/multi-qa-mpnet-base-dot-v1" +tokenizer = AutoTokenizer.from_pretrained(model_ckpt) +model = TFAutoModel.from_pretrained(model_ckpt, from_pt=True) +``` + +Notăm că am setat `from_pt=True` ca argument al metodei `from_pretrained()`. Acest lucru se datorează faptului că checkpoint-ul `multi-qa-mpnet-base-dot-v1` are doar PyTorch weights, astfel încât setarea `from_pt=True` le va converti automat în format TensorFlow pentru noi. După cum puteți vedea, este foarte simplu să treci de la un framework la altul în 🤗 Transformers! + +{/if} + +După cum am menționat anterior, dorim să reprezentăm fiecare intrare din corpusul nostru de GitHub issues sub forma unui vector, astfel încât avem nevoie să "agregăm" sau să facem media la tokem embeddings într-un anumit mod. O abordare populară este de a efectua *CLS pooling* pe outputurile modelului nostru, unde pur și simplu colectăm ultimul stadiu ascuns pentru tokenul special `[CLS]`. Următoarea funcție face acest lucru pentru noi: + +```py +def cls_pooling(model_output): + return model_output.last_hidden_state[:, 0] +``` + +În continuare, vom crea o funcție ajutătoare care va tokeniza o listă de documente, va plasa tensorii pe GPU, îi va alimenta în model și, în final, va aplica CLS pooling la outputuri: + +{#if fw === 'pt'} + +```py +def get_embeddings(text_list): + encoded_input = tokenizer( + text_list, padding=True, truncation=True, return_tensors="pt" + ) + encoded_input = {k: v.to(device) for k, v in encoded_input.items()} + model_output = model(**encoded_input) + return cls_pooling(model_output) +``` + +Putem testa funcția oferindui prima intrare de text în corpusul nostru și analizând output shapeul: + +```py +embedding = get_embeddings(comments_dataset["text"][0]) +embedding.shape +``` + +```python out +torch.Size([1, 768]) +``` + +Minunat, am transformat prima intrare din corpusul nostru într-un vector de 768 de dimensiuni! Putem utiliza `Dataset.map()` pentru a aplica funcția noastră `get_embeddings()` la fiecare rând din corpusul nostru, astfel încât să creăm o nouă coloană `embeddings` în acest mod: + +```py +embeddings_dataset = comments_dataset.map( + lambda x: {"embeddings": get_embeddings(x["text"]).detach().cpu().numpy()[0]} +) +``` + +{:else} + +```py +def get_embeddings(text_list): + encoded_input = tokenizer( + text_list, padding=True, truncation=True, return_tensors="tf" + ) + encoded_input = {k: v for k, v in encoded_input.items()} + model_output = model(**encoded_input) + return cls_pooling(model_output) +``` + +Putem testa funcția oferindui prima intrare de text în corpusul nostru și analizând output shapeul: + +```py +embedding = get_embeddings(comments_dataset["text"][0]) +embedding.shape +``` + +```python out +TensorShape([1, 768]) +``` + +Minunat, am transformat prima intrare din corpusul nostru într-un vector de 768 de dimensiuni! Putem utiliza `Dataset.map()` pentru a aplica funcția noastră `get_embeddings()` la fiecare rând din corpusul nostru, astfel încât să creăm o nouă coloană `embeddings` în acest mod: + +```py +embeddings_dataset = comments_dataset.map( + lambda x: {"embeddings": get_embeddings(x["text"]).numpy()[0]} +) +``` + +{/if} + +Observăm că am transformat embeddingurile în matrice NumPy -- acest lucru este necesar deoarece biblioteca 🤗 Datasets cere acest format atunci când încercăm să indexăm cu FAISS, ceea ce vom face în continuare. + +## Utilizarea FAISS pentru căutare de similaritate eficientă[[using-faiss-for-efficient-similarity-search]] + +Acum că avem un dataset de embeddings, avem nevoie de o modalitate de a căuta printre ele. Pentru a face acest lucru, vom utiliza o structură de date specială din 🤗 Datasets, numită _FAISS index_. [FAISS](https://faiss.ai/) (prescurtat de la Facebook AI Similarity Search) este o bibliotecă care oferă algoritmi eficienți pentru căutarea rapidă și clusteringul al embedding vectors. + +Ideea de bază din spatele FAISS este crearea unei structuri de date speciale numite _index_, care permite găsirea embeddingurilor similare cu un input embedding. Crearea unui index FAISS în 🤗 Datasets este simplu -- utilizăm funcția `Dataset.add_faiss_index()` și specificăm care coloană a datasetului nostru dorim să indexăm: + +```py +embeddings_dataset.add_faiss_index(column="embeddings") +``` + +Acum putem efectua queries pe acest index realizând o căutare a celor mai apropiați vecini cu funcția `Dataset.get_nearest_examples()`. Haideți să testăm acest lucru prin încorporarea unei întrebări astfel: + +{#if fw === 'pt'} + +```py +question = "How can I load a dataset offline?" +question_embedding = get_embeddings([question]).cpu().detach().numpy() +question_embedding.shape +``` + +```python out +torch.Size([1, 768]) +``` + +{:else} + +```py +question = "How can I load a dataset offline?" +question_embedding = get_embeddings([question]).numpy() +question_embedding.shape +``` + +```python out +(1, 768) +``` + +{/if} + +La fel ca și în cazul documentelor, acum avem un vector de 768 de dimensiuni care reprezintă query-ul, pe care îl putem compara cu întregul corpus pentru a găsi embeddingurile cele mai similare: + +```py +scores, samples = embeddings_dataset.get_nearest_examples( + "embeddings", question_embedding, k=5 +) +``` + +Funcția `Dataset.get_nearest_examples()` returnează un tuple cu scorurile care clasifică suprapunerea dintre query și document, și un set corespunzător de sampleuri (în acest caz, cele 5 match-uri). Haideți să colectăm acestea într-un `pandas.DataFrame` pentru a le putea sorta cu ușurință: + +```py +import pandas as pd + +samples_df = pd.DataFrame.from_dict(samples) +samples_df["scores"] = scores +samples_df.sort_values("scores", ascending=False, inplace=True) +``` + +Acum putem itera peste primele rânduri pentru a veadea cât de bine un query se potrivește cu comentariile disponibile: + +```py +for _, row in samples_df.iterrows(): + print(f"COMMENT: {row.comments}") + print(f"SCORE: {row.scores}") + print(f"TITLE: {row.title}") + print(f"URL: {row.html_url}") + print("=" * 50) + print() +``` + +```python out +""" +COMMENT: Requiring online connection is a deal breaker in some cases unfortunately so it'd be great if offline mode is added similar to how `transformers` loads models offline fine. + +@mandubian's second bullet point suggests that there's a workaround allowing you to use your offline (custom?) dataset with `datasets`. Could you please elaborate on how that should look like? +SCORE: 25.505046844482422 +TITLE: Discussion using datasets in offline mode +URL: https://github.com/huggingface/datasets/issues/824 +================================================== + +COMMENT: The local dataset builders (csv, text , json and pandas) are now part of the `datasets` package since #1726 :) +You can now use them offline +\`\`\`python +datasets = load_dataset("text", data_files=data_files) +\`\`\` + +We'll do a new release soon +SCORE: 24.555509567260742 +TITLE: Discussion using datasets in offline mode +URL: https://github.com/huggingface/datasets/issues/824 +================================================== + +COMMENT: I opened a PR that allows to reload modules that have already been loaded once even if there's no internet. + +Let me know if you know other ways that can make the offline mode experience better. I'd be happy to add them :) + +I already note the "freeze" modules option, to prevent local modules updates. It would be a cool feature. + +---------- + +> @mandubian's second bullet point suggests that there's a workaround allowing you to use your offline (custom?) dataset with `datasets`. Could you please elaborate on how that should look like? + +Indeed `load_dataset` allows to load remote dataset script (squad, glue, etc.) but also you own local ones. +For example if you have a dataset script at `./my_dataset/my_dataset.py` then you can do +\`\`\`python +load_dataset("./my_dataset") +\`\`\` +and the dataset script will generate your dataset once and for all. + +---------- + +About I'm looking into having `csv`, `json`, `text`, `pandas` dataset builders already included in the `datasets` package, so that they are available offline by default, as opposed to the other datasets that require the script to be downloaded. +cf #1724 +SCORE: 24.14896583557129 +TITLE: Discussion using datasets in offline mode +URL: https://github.com/huggingface/datasets/issues/824 +================================================== + +COMMENT: > here is my way to load a dataset offline, but it **requires** an online machine +> +> 1. (online machine) +> +> ``` +> +> import datasets +> +> data = datasets.load_dataset(...) +> +> data.save_to_disk(/YOUR/DATASET/DIR) +> +> ``` +> +> 2. copy the dir from online to the offline machine +> +> 3. (offline machine) +> +> ``` +> +> import datasets +> +> data = datasets.load_from_disk(/SAVED/DATA/DIR) +> +> ``` +> +> +> +> HTH. + + +SCORE: 22.893993377685547 +TITLE: Discussion using datasets in offline mode +URL: https://github.com/huggingface/datasets/issues/824 +================================================== + +COMMENT: here is my way to load a dataset offline, but it **requires** an online machine +1. (online machine) +\`\`\` +import datasets +data = datasets.load_dataset(...) +data.save_to_disk(/YOUR/DATASET/DIR) +\`\`\` +2. copy the dir from online to the offline machine +3. (offline machine) +\`\`\` +import datasets +data = datasets.load_from_disk(/SAVED/DATA/DIR) +\`\`\` + +HTH. +SCORE: 22.406635284423828 +TITLE: Discussion using datasets in offline mode +URL: https://github.com/huggingface/datasets/issues/824 +================================================== +""" +``` + +Nu-i rău! A doua încercare se pare că se potrivește cu query-ul! + + + +✏️ **Încearcă!** Creează propriul tău query și vezi dacp poți găsi un răspuns și să extragi documentele. S-ar putea să trebuiești să crești parametrul `k` în `Dataset.get_nearest_examples()` pentru a mări căutarea. + + \ No newline at end of file diff --git a/chapters/rum/chapter5/7.mdx b/chapters/rum/chapter5/7.mdx new file mode 100644 index 000000000..39922875f --- /dev/null +++ b/chapters/rum/chapter5/7.mdx @@ -0,0 +1,16 @@ +# 🤗 Datasets, verificare![[datasets-check]] + + + +Ei bine, a fost un tur palpitant prin biblioteca 🤗 Datasets -- felicitări pentru că ai ajuns până aici! Cu cunoștințele pe care le-ai dobândit din acest capitol, ar trebui să fii capabil să: + +- Încarci dataseturi de oriunde, fie Hugging Face Hub, laptopul tău sau un server remote de la compania ta. +- Modelezi datele tale folosind o combinație a funcțiilor `Dataset.map()` și `Dataset.filter()`. +- Schimbi rapid între data formats precum Pandas și NumPy folosind `Dataset.set_format()`. +- Creezi propriul tău dataset și să îl publici pe Hugging Face Hub. +- Încorporezi documentele tale folosind un model Transformer și construiești un motor de căutare semantică folosind FAISS. + +În [Capitolul 7](/course/chapter7), vom pune toate acestea în practică, făcând o examinare amănunțită a principalelor sarcini NLP pentru care modelele Transformer sunt excelente. Înainte de a trece mai departe, puneți-vă cunoștințele despre 🤗 Datasets la încercare cu un quiz rapid! \ No newline at end of file diff --git a/chapters/rum/chapter5/8.mdx b/chapters/rum/chapter5/8.mdx new file mode 100644 index 000000000..fc619da62 --- /dev/null +++ b/chapters/rum/chapter5/8.mdx @@ -0,0 +1,228 @@ +# Quiz de final de capitol[[end-of-chapter-quiz]] + + + +Acest capitol a acoperit o mulțime de subiecte! Nu vă faceți griji dacă nu ați înțeles toate detaliile; capitolele următoare vă vor ajuta să înțelegeți cum funcționează lucrurile mai aprofundat. + +Înainte de a trece mai departe, totuși trebuie să testăm ce ați învățat în acest capitol. + +### 1. Funcția `load_dataset()` din 🤗 Datasets vă permite să încărcați un dataset din care dintre următoarele locații? + +load_dataset('emotion').", + correct: true + }, + { + text: "Un server remote", + explain: "Corect! Puteți trece URL-uri ca argument al `data_files` al `load_dataset()` pentru a încărca fișiere remote.", + correct: true + }, + ]} +/> + +### 2. Presupunem că încărcați una dintre sarcinile GLUE astfel: + +```py +from datasets import load_dataset + +dataset = load_dataset("glue", "mrpc", split="train") +``` + +Care dintre următoarele comenzi va produce un exemplu aleatoriu de 50 de elemente din `dataset`? + +dataset.sample(50)", + explain: "Acest lucru este incorect -- nu există o metodă `Dataset.sample()`." + }, + { + text: "dataset.shuffle().select(range(50))", + explain: "Corect! Așa cum ați văzut în acest capitol, mai întâi faceți shuffle datasetului și apoi selectați exemplele din el.", + correct: true + }, + { + text: "dataset.select(range(50)).shuffle()", + explain: "Acest lucru este incorect -- deși codul va rula, va amesteca doar primele 50 de elemente din setul de date." + } + ]} +/> + +### 3. Presupunem că aveți un set de date despre animale de companie numit `pets_dataset`, care are o coloană `name` care denotă numele fiecărui animal de companie. Care dintre următoarele abordări v-ar permite să filtrați setul de date pentru toate animalele de companie ale căror nume încep cu litera "L"? + +pets_dataset.filter(lambda x : x['name'].startswith('L'))", + explain: "Corect! Utilizarea unei funcții lambda python pentru aceste filtre rapide este o idee grozavă. Vă puteți gândi și la o altă soluție?", + correct: true + }, + { + text: "pets_dataset.filter(lambda x['name'].startswith('L'))", + explain: "Acest lucru este incorect -- o funcție lambda are forma generală lambda *arguments* : *expression*, deci trebuie să furnizați argumente în acest caz." + }, + { + text: "Creați o funcție ca def filter_names(x): return x['name'].startswith('L') și rulați pets_dataset.filter(filter_names).", + explain: "Corect! La fel ca și cu Dataset.map(), puteți trece funcții explicite la Dataset.filter(). Acest lucru este util atunci când aveți o logică complexă care nu este potrivită pentru o funcție lambda. Care dintre celelalte soluții ar mai funcționa?", + correct: true + } + ]} +/> + +### 4. Ce este memory mapping? + + + +### 5. Care sunt principalele beneficii ale memory-mapping? + + + +### 6. De ce codul următor eșuează? + +```py +from datasets import load_dataset + +dataset = load_dataset("allocine", streaming=True, split="train") +dataset[0] +``` + +IterableDataset.", + explain: "Corect! Un IterableDataset este un generator, nu un container, deci ar trebui să accesați elementele sale utilizând next(iter(dataset)).", + correct: true + }, + { + text: "Datasetul allocine nu are o un split train.", + explain: "Acest lucru este incorect -- consultați cardul datasetului allocine de pe Hub pentru a vedea ce splituri conține." + } + ]} +/> + +### 7. Care sunt principalele beneficii ale creării unui dataset card? + + + +### 8. Ce este căutarea semantică? + + + +### 9. Pentru căutarea semantică asimetrică, de obicei aveți: + + + +### 10. Pot utiliza 🤗 Datasets pentru a încărca date pentru utilizare în alte domenii, cum ar fi speech processing? + +MNIST de pe Hub pentru a vedea un exemplu de computer vision." + }, + { + text: "Da", + explain: "Corect! Consultați dezvoltările interesante cu privire la speech și vision în biblioteca 🤗 Transformers pentru a vedea cum 🤗 Datasets este utilizat în aceste domenii.", + correct: true + }, + ]} +/> \ No newline at end of file