-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathstep6_eval_rms.py
270 lines (233 loc) · 15.5 KB
/
step6_eval_rms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
import torch
from tqdm import tqdm
import os
import json
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.model_selection import train_test_split
from tqdm import tqdm
import numpy as np
import argparse
from typing import Dict, Optional
from datasets import Dataset, load_dataset, concatenate_datasets
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, AutoModelForSequenceClassification
import lightgbm as lgb
from networks import MLP, forward_siamese, train_model, save_model
from scipy.stats import spearmanr
parser = argparse.ArgumentParser()
parser.add_argument("--embed_model_name", type=str, default='gemma2b')
parser.add_argument("--task", type=str, default="helpful") # pref
parser.add_argument("--sft_obj", type=str, default='-gpt4') # hl
parser.add_argument("--output_dir", type=str, default='temp_out_dir') # generated_responses/ , generated_summaries/
parser.add_argument('--server_alias', type=str, default='lq')
parser.add_argument("--gen_pref_model_name", type=str, default='gemma2b')
parser.add_argument("--ensemble_number", type=int, default=3)
parser.add_argument("--rm_objective",type=str,choices=['clf','bt'], default='bt')
parser.add_argument("--consider_first_n", type=int, default=-2)
parser.add_argument("--n_sample", type=int, default=10000)
parser.add_argument("--n_pairs", type=int, default=1)
parser.add_argument("--training_epochs",type=int,default=30)
parser.add_argument("--learning_rate",type=float,default=0.001)
parser.add_argument("--normal_or_xprompt",type=str,default='xprompt',choices=['normal','xprompt'])
parser.add_argument("--replacement", type=str, default='replacement_false', choices=['replacement_true', 'replacement_false'])
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--max_len", type=int, default=-1)
parser.add_argument("--annotation_quality", type=float, default=10)
args = parser.parse_args()
args.sft_obj_name = 'none' if args.sft_obj == '' else 'gpt4'
args.sft_obj = '' if args.sft_obj == 'none' else '-gpt4'
args_annotation_quality = {10.0: '10_0',
5.0: '5_0',
3.0: '3_0',
1.0: '1_0',
0.7: '0_7',
0.5: '0_5',
0.3: '0_3',
0.1: '0_1',
0.01: '0_01',
0.001: '0_001'}
args_replacement = True if args.replacement == 'replacement_true' else False
rm_name = 'rmmistral7b' if args.task == 'helpful' else 'rayharmless'
max_len_list = [128]
for max_len in max_len_list:
args.max_len = max_len
results = {}
for split in range(5):
results[f'split{split}'] = {}
for test_gen_pref_model_name in [args.gen_pref_model_name]: #
if args.embed_model_name == 'gemma2b':
embedding_dataset = torch.load(f"/mnt/bn/hsunvolume-lq/Step4_2_testall/EXPembed_model_name_{args.embed_model_name}_dataset_orig_hh-rlhf-{args.task}{args.sft_obj}_gen_pref_model_name_{test_gen_pref_model_name}_n_samples_500_max_len_128_split_{split}_server_alias_lq/{args.embed_model_name}_{test_gen_pref_model_name}_hh-rlhf-{args.task}{args.sft_obj}_{split}_testembedding_total_128.pt")
elif args.embed_model_name == 'gemma7b':
embedding_dataset = torch.load(f"/mnt/bn/hsunvolume-lq/Step4_2_testall_7b/EXPembed_model_name_{args.embed_model_name}_dataset_orig_hh-rlhf-{args.task}{args.sft_obj}_gen_pref_model_name_{test_gen_pref_model_name}_n_samples_500_max_len_128_split_{split}_server_alias_lq/{args.embed_model_name}_{test_gen_pref_model_name}_hh-rlhf-{args.task}{args.sft_obj}_{split}_testembedding_total_128.pt")
else:
embedding_dataset = None
raise ValueError(f"Invalid embed_model_name: {args.embed_model_name}")
file_name = f'/mnt/bn/hsunvolume-lq/Step3_Annotate_Test_RPT/EXPmodel_name_{test_gen_pref_model_name}_dataset_hh-rlhf-{args.task}{args.sft_obj}_n_samples_500_split_{split}_data_class_test_server_alias_yg_rm{rm_name}_{split}_maxlen128.json'
reward_list=[]
id_set = []
with open(file_name) as f:
for line in f:
sub_reward_list = []
out_data = json.loads(line)
if out_data['id'] in id_set:
continue
id_set.append(out_data['id'])
for idx in range(500):
sub_reward_list.append(out_data[f'rm_{rm_name}_{idx}'])
reward_list.append(sub_reward_list)
assert len(reward_list) == embedding_dataset.shape[1]
# load lgb models
model_predictions = []
for model_i in range(args.ensemble_number-1,args.ensemble_number):
# load mlp model from the checkpoint
model = MLP(embedding_dataset.shape[2])
if args.normal_or_xprompt == 'xprompt':
pre_fix = f"/mnt/bn/hsunvolume-{args.server_alias}/Step5_CNT_ML_ALLCASE_ET3_beta/EXPembed_model_name_{args.embed_model_name}_task_{args.task}_sft_obj_{args.sft_obj_name}_rm_objective_{args.rm_objective}_annotation_quality_{args_annotation_quality[args.annotation_quality]}_replacement_{args.replacement}_gen_pref_model_name_{test_gen_pref_model_name}_ensemble_number_{args.ensemble_number}_server_alias_{args.server_alias}"
post_fix = f"/XPrompt_mlp_{args.rm_objective}_{model_i}_seed{args.seed}_firstn_{args.consider_first_n}_n_{args.n_sample}_pair_{args.n_pairs}_replacement_{args_replacement}_epoch{args.training_epochs}_lr{args.learning_rate}.ckpt"
elif args.normal_or_xprompt == 'normal':
pre_fix = f"/mnt/bn/hsunvolume-{args.server_alias}/Step5_CNT_ML_ALLCASE_ET3_beta/EXPembed_model_name_{args.embed_model_name}_task_{args.task}_sft_obj_{args.sft_obj_name}_rm_objective_{args.rm_objective}_annotation_quality_{args_annotation_quality[args.annotation_quality]}_gen_pref_model_name_{test_gen_pref_model_name}_ensemble_number_{args.ensemble_number}_server_alias_{args.server_alias}"
post_fix = f"/POS_mlp_{args.rm_objective}_{model_i}_seed{args.seed}_firstn_{args.consider_first_n}_n_{args.n_sample}_pair_{args.n_pairs}_epoch{args.training_epochs}_lr{args.learning_rate}.ckpt"
else:
pre_fix = post_fix = None
raise ValueError(f"Invalid normal_or_xprompt: {args.normal_or_xprompt}")
model.load_state_dict(torch.load(pre_fix + post_fix))
model.eval()
model_i_all_preds = []
for instance_i in range(embedding_dataset.shape[1]):
model_i_all_preds.append(model(torch.tensor(embedding_dataset[:, instance_i])).detach().numpy())
model_predictions.append(model_i_all_preds)
model_predictions = np.array(model_predictions)
model_predictions_mean = model_predictions.mean(0)
model_predictions_min = model_predictions.min(0)
model_predictions_first = model_predictions[0]
# calculate binary accuracy
quantile_list_mean = []
quantile_list_min = []
quantile_list_first = []
acc_list_mean = []
acc_list_min = []
acc_list_first = []
for instance_i in range(embedding_dataset.shape[1]):
max_idx_mean = np.argmax(model_predictions_mean[instance_i])
max_idx_min = np.argmax(model_predictions_min[instance_i])
max_idx_first = np.argmax(model_predictions_first[instance_i])
real_value_mean = reward_list[instance_i][max_idx_mean]
real_value_min = reward_list[instance_i][max_idx_min]
real_value_first = reward_list[instance_i][max_idx_first]
# calculate the quantile of the selected max in the reward list
quantile_mean = np.sum(np.asarray(reward_list[instance_i]) <= real_value_mean) / len(reward_list[instance_i])
quantile_min = np.sum(np.asarray(reward_list[instance_i]) <= real_value_min) / len(reward_list[instance_i])
quantile_first = np.sum(np.asarray(reward_list[instance_i]) <= real_value_first) / len(reward_list[instance_i])
quantile_list_mean.append(quantile_mean)
quantile_list_min.append(quantile_min)
quantile_list_first.append(quantile_first)
if quantile_mean <= 0.5:
acc_list_mean.append(1)
else:
acc_list_mean.append(0)
if quantile_min <= 0.5:
acc_list_min.append(1)
else:
acc_list_min.append(0)
if quantile_first <= 0.5:
acc_list_first.append(1)
else:
acc_list_first.append(0)
print(f"Mean quantile of selected max using MEAN ESB {np.mean(quantile_list_mean)}")
print(f"Mean quantile of selected max using MIN ESB {np.mean(quantile_list_min)}")
print(f"Mean quantile of selected max using FIRST ESB {np.mean(quantile_list_first)}")
print(f"Mean binary accuracy using MEAN ESB {np.mean(acc_list_mean)}")
print(f"Mean binary accuracy using MIN ESB {np.mean(acc_list_min)}")
print(f"Mean binary accuracy using FIRST ESB {np.mean(acc_list_first)}")
quantile_list_mean = np.array(quantile_list_mean)
quantile_list_min = np.array(quantile_list_min)
quantile_list_first = np.array(quantile_list_first)
acc_list_mean = np.array(acc_list_mean)
acc_list_min = np.array(acc_list_min)
acc_list_first = np.array(acc_list_first)
# record the quantile of selected max
# overall spearman correlation between predictions and reward list
correlations = []
for instance_i in range(embedding_dataset.shape[1]):
# predicted_ranks = np.argsort(np.argsort())+1
correlations.append(spearmanr(model_predictions_mean[instance_i], reward_list[instance_i]).correlation)
correlations_mean = np.array(correlations)
print(f"Mean Spearman correlation using MEAN ESB {np.mean(correlations_mean[~np.isnan(correlations_mean)])}")
correlations = []
for instance_i in range(embedding_dataset.shape[1]):
# predicted_ranks = np.argsort(np.argsort())+1
correlations.append(spearmanr(model_predictions_min[instance_i], reward_list[instance_i]).correlation)
correlations_min = np.array(correlations)
print(f"Mean Spearman correlation using MIN ESB {np.mean(correlations_min[~np.isnan(correlations_min)])}")
correlations = []
for instance_i in range(embedding_dataset.shape[1]):
# predicted_ranks = np.argsort(np.argsort())+1
correlations.append(spearmanr(model_predictions_first[instance_i], reward_list[instance_i]).correlation)
correlations_first = np.array(correlations)
print(f"Mean Spearman correlation using FIRST ESB {np.mean(correlations_first[~np.isnan(correlations_first)])}")
# evaluate best of N:
reward_mean_list = []
reward_min_list = []
reward_first_list = []
for repeat_exp in range(100):
repeat_mean_list = []
repeat_min_list = []
repeat_first_list = []
np.random.seed(repeat_exp)
sampled_idx_all_exp = np.random.choice(500, 500, replace=False)
for N_best in [2, 5, 10, 30, 50, 100, 300, 500]:
sampled_idx = sampled_idx_all_exp[:N_best]
reduced_predictions = model_predictions[:, :, sampled_idx]
effect_reward_list = np.asarray(reward_list)[:, sampled_idx]
reduced_predictions_mean = reduced_predictions.mean(0)
reduced_predictions_min = reduced_predictions.min(0)
reduced_predictions_first = reduced_predictions[0]
# select the best of N and evaluate its reward
argmax_mean = np.argmax(reduced_predictions_mean, axis=1)
argmax_min = np.argmax(reduced_predictions_min, axis=1)
argmax_first = np.argmax(reduced_predictions_first, axis=1)
# calculate the reward
reward_mean = np.array([effect_reward_list[i][argmax_mean[i]] for i in range(embedding_dataset.shape[1])])
reward_min = np.array([effect_reward_list[i][argmax_min[i]] for i in range(embedding_dataset.shape[1])])
reward_first = np.array([effect_reward_list[i][argmax_first[i]] for i in range(embedding_dataset.shape[1])])
repeat_mean_list.append(reward_mean.mean())
repeat_min_list.append(reward_min.mean())
repeat_first_list.append(reward_first.mean())
reward_mean_list.append(repeat_mean_list)
reward_min_list.append(repeat_min_list)
reward_first_list.append(repeat_first_list)
print(f"Mean reward using MEAN ESB {reward_mean_list}")
print(f"Mean reward using MIN ESB {reward_min_list}")
print(f"Mean reward using FIRST ESB {reward_first_list}")
reward_mean_list = np.array(reward_mean_list)
reward_min_list = np.array(reward_min_list)
reward_first_list = np.array(reward_first_list)
import matplotlib.pyplot as plt
plt.plot(reward_mean_list.mean(0), label = 'mean')
plt.fill_between(range(8), reward_mean_list.mean(0)-reward_mean_list.std(0), reward_mean_list.mean(0)+reward_mean_list.std(0), alpha=0.3)
plt.plot(reward_min_list.mean(0), label = 'min')
plt.fill_between(range(8), reward_min_list.mean(0)-reward_min_list.std(0), reward_min_list.mean(0)+reward_min_list.std(0), alpha=0.3)
plt.plot(reward_first_list.mean(0), label = 'none')
plt.fill_between(range(8), reward_first_list.mean(0)-reward_first_list.std(0), reward_first_list.mean(0)+reward_first_list.std(0), alpha=0.3)
plt.legend()
plt.title(f'{test_gen_pref_model_name}')
plt.show()
results[f'split{split}'][test_gen_pref_model_name] = {
'correlations_mean': np.mean(correlations_mean[~np.isnan(correlations_mean)]),
'correlations_min': np.mean(correlations_min[~np.isnan(correlations_min)]),
'correlations_first': np.mean(correlations_first[~np.isnan(correlations_first)]),
'reward_mean_list': reward_mean_list.tolist(),
'reward_min_list': reward_min_list.tolist(),
'reward_first_list': reward_first_list.tolist(),
'quantile_list_mean': quantile_list_mean.tolist(),
'quantile_list_min': quantile_list_min.tolist(),
'quantile_list_first': quantile_list_first.tolist(),
'acc_list_mean': acc_list_mean.tolist(),
'acc_list_min': acc_list_min.tolist(),
'acc_list_first': acc_list_first.tolist()
}
# save results
with open(f"{args.output_dir}/MLP_x_or_n_{args.normal_or_xprompt}_{args.rm_objective}_epoch{args.training_epochs}_lr{args.learning_rate}_XPrompt-RESULTS_firstn_{args.consider_first_n}_n_{args.n_sample}_pair_{args.n_pairs}_seed{args.seed}_BON-{args.max_len}_replacement_{args_replacement}.json", 'w') as f:
json.dump(results, f)