Skip to content

Corresponding code for the Query Generation Module #10

@KevinGoodman

Description

@KevinGoodman

image
Thanks for sharing the code. However, I'm quite confused for the code of QGM as the naming of the code is a little different from the original paper(if I understand it correctly...)

I think the code for that module is defined in function lang_tf_enc of model/transformer_model.py

def lang_tf_enc(vision_input,
                lang_input,
                head_num=8,
                hidden_dim=256):
    decoder_embed_lang = TrigPosEmbedding(
        mode=TrigPosEmbedding.MODE_ADD,
        name='Fusion-Lang-Decoder-Embedding',
    )(lang_input)
    decoder_embed_vis = TrigPosEmbedding(
        mode=TrigPosEmbedding.MODE_ADD,
        name='Fusion-Vis-Decoder-Embedding',
    )(vision_input)
    q_inp = L.Dense(hidden_dim, activation='relu')(decoder_embed_vis)
    k_inp = L.Dense(hidden_dim, activation='relu')(decoder_embed_lang)
    v_inp = L.Dense(hidden_dim, activation='relu')(decoder_embed_lang)
    decoded_layer = MultiHeadAttention(head_num=head_num)(
        [q_inp, k_inp, v_inp])
    add_layer = L.Add(name='Fusion-Add')([decoded_layer, vision_input])

    return add_layer

As the figure 4 suggests, the input vision features should be the raw vision features extracted from the vision backbone network. Yet the input for this function is features fused by vision & language features Fm_query(in function make_multitask_braches of model/vlt_model.py):

def make_multitask_braches(Fv, fq, fq_word, config):
    # fq: bs, 1024
    # fq_word: bs, 15, 1024
    Fm = simple_fusion(Fv[0], fq, config.jemb_dim)  # 13, 13, 1024

    Fm_mid_query = up_proj_cat_proj(Fm, Fv[1], K.int_shape(Fv[1],)[-1], K.int_shape(Fm)[-1]//2)  # 26, 26, 512
    Fm_query = pool_proj_cat_proj(Fm_mid_query, Fv[2], K.int_shape(Fv[2])[-1], K.int_shape(Fm)[-1]//2)  # 26, 26, 512

    Fm_mid_tf = proj_cat(Fm_query, Fm_mid_query, K.int_shape(Fm)[-1]//2)  # 26, 26, 1024
    F_tf = up_proj_cat_proj(Fm, Fm_mid_tf, K.int_shape(Fm)[-1] // 2)

    F_tf = V.DarknetConv2D_BN_Leaky(config.hidden_dim, (1, 1))(F_tf)

    # Fm_query:  bs, Hm, Wm, C  (None, 26, 26, 512)
    # Fm_top_tf :  bs, Hc, Wc, C  (None, 26, 26, 512)
    query_out = vlt_querynet(Fm_query, config)
    mask_out = vlt_transformer(F_tf, fq_word, query_out, config)
    mask_out = vlt_postproc(mask_out, Fm_query, config)

    return mask_out

Can you tell me if I got it wrong? Thanks for your great patience.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions