Skip to content

About the trained model. #25

@ddghost

Description

@ddghost

Hi, when I use your trained model for clipart. The model can not find these parameters:

'RCNN_base2.0.2.bn2.num_batches_tracked', 'RCNN_base3.0.5.bn2.num_batches_tracked', 'RCNN_base1.4.0.bn3.num_batches_tracked', 'RCNN_base3.0.6.bn1.num_batches_tracked', 'RCNN_base3.0.18.bn2.num_batches_tracked', 'RCNN_base3.0.4.bn1.num_batches_tracked', 'RCNN_base3.0.12.bn3.num_batches_tracked', 'RCNN_base3.0.16.bn3.num_batches_tracked', 'RCNN_base3.0.9.bn2.num_batches_tracked', 'RCNN_base1.4.0.downsample.1.num_batches_tracked', 'RCNN_base2.0.0.bn3.num_batches_tracked', 'RCNN_base1.4.2.bn3.num_batches_tracked', 'RCNN_base3.0.13.bn1.num_batches_tracked', 'RCNN_base3.0.20.bn2.num_batches_tracked', 'RCNN_base3.0.4.bn2.num_batches_tracked', 'RCNN_base1.4.0.bn1.num_batches_tracked', 'RCNN_base3.0.13.bn2.num_batches_tracked', 'RCNN_top.0.0.downsample.1.num_batches_tracked', 'RCNN_base3.0.12.bn1.num_batches_tracked', 'RCNN_base3.0.20.bn3.num_batches_tracked', 'RCNN_base3.0.3.bn3.num_batches_tracked', 'RCNN_base3.0.1.bn2.num_batches_tracked', 'RCNN_base3.0.5.bn1.num_batches_tracked', 'RCNN_base1.1.num_batches_tracked', 'netD3.bn1.num_batches_tracked', 'RCNN_base3.0.16.bn2.num_batches_tracked', 'RCNN_base3.0.15.bn2.num_batches_tracked', 'RCNN_base3.0.21.bn1.num_batches_tracked', 'RCNN_base3.0.18.bn3.num_batches_tracked', 'RCNN_base3.0.8.bn1.num_batches_tracked', 'RCNN_base2.0.0.downsample.1.num_batches_tracked', 'netD_inst.bn2.num_batches_tracked', 'RCNN_base3.0.21.bn2.num_batches_tracked', 'RCNN_top.0.1.bn1.num_batches_tracked', 'RCNN_base3.0.21.bn3.num_batches_tracked', 'RCNN_base3.0.1.bn1.num_batches_tracked', 'RCNN_base3.0.0.bn2.num_batches_tracked', 'RCNN_base2.0.3.bn2.num_batches_tracked', 'RCNN_base3.0.1.bn3.num_batches_tracked', 'RCNN_base2.0.0.bn1.num_batches_tracked', 'RCNN_base3.0.14.bn2.num_batches_tracked', 'RCNN_base3.0.17.bn1.num_batches_tracked', 'RCNN_base3.0.20.bn1.num_batches_tracked', 'RCNN_base3.0.2.bn3.num_batches_tracked', 'RCNN_base2.0.2.bn1.num_batches_tracked', 'RCNN_base3.0.7.bn1.num_batches_tracked', 'RCNN_base3.0.22.bn1.num_batches_tracked', 'RCNN_base2.0.2.bn3.num_batches_tracked', 'RCNN_base3.0.11.bn3.num_batches_tracked', 'RCNN_top.0.2.bn1.num_batches_tracked', 'RCNN_base1.4.2.bn1.num_batches_tracked', 'RCNN_top.0.1.bn3.num_batches_tracked', 'RCNN_base3.0.19.bn2.num_batches_tracked', 'RCNN_base2.0.1.bn1.num_batches_tracked', 'RCNN_base3.0.7.bn2.num_batches_tracked', 'RCNN_top.0.2.bn3.num_batches_tracked', 'RCNN_top.0.1.bn2.num_batches_tracked', 'RCNN_base1.4.0.bn2.num_batches_tracked', 'RCNN_base1.4.1.bn3.num_batches_tracked', 'RCNN_base3.0.10.bn1.num_batches_tracked', 'RCNN_base3.0.19.bn3.num_batches_tracked', 'RCNN_base3.0.17.bn3.num_batches_tracked', 'RCNN_base3.0.11.bn2.num_batches_tracked', 'RCNN_base3.0.19.bn1.num_batches_tracked', 'RCNN_base3.0.8.bn3.num_batches_tracked', 'RCNN_base3.0.14.bn1.num_batches_tracked', 'RCNN_base3.0.12.bn2.num_batches_tracked', 'RCNN_base1.4.2.bn2.num_batches_tracked', 'RCNN_base3.0.11.bn1.num_batches_tracked', 'RCNN_base1.4.1.bn2.num_batches_tracked', 'RCNN_base2.0.0.bn2.num_batches_tracked', 'RCNN_base3.0.6.bn2.num_batches_tracked', 'RCNN_base3.0.10.bn2.num_batches_tracked', 'RCNN_base3.0.6.bn3.num_batches_tracked', 'RCNN_base2.0.3.bn1.num_batches_tracked', 'RCNN_base3.0.9.bn3.num_batches_tracked', 'netD2.bn1.num_batches_tracked', 'RCNN_base3.0.2.bn1.num_batches_tracked', 'RCNN_base2.0.3.bn3.num_batches_tracked', 'RCNN_base3.0.0.downsample.1.num_batches_tracked', 'RCNN_base3.0.22.bn3.num_batches_tracked', 'RCNN_top.0.0.bn1.num_batches_tracked', 'RCNN_base3.0.4.bn3.num_batches_tracked', 'RCNN_top.0.0.bn2.num_batches_tracked', 'RCNN_base1.4.1.bn1.num_batches_tracked', 'RCNN_base3.0.10.bn3.num_batches_tracked', 'RCNN_base3.0.3.bn2.num_batches_tracked', 'netD2.bn2.num_batches_tracked', 'RCNN_base3.0.5.bn3.num_batches_tracked', 'RCNN_base3.0.3.bn1.num_batches_tracked', 'RCNN_base3.0.7.bn3.num_batches_tracked', 'RCNN_base3.0.22.bn2.num_batches_tracked', 'RCNN_base3.0.18.bn1.num_batches_tracked', 'netD3.bn3.num_batches_tracked', 'RCNN_base3.0.17.bn2.num_batches_tracked', 'RCNN_base3.0.2.bn2.num_batches_tracked', 'RCNN_base3.0.15.bn3.num_batches_tracked', 'RCNN_base3.0.0.bn1.num_batches_tracked', 'RCNN_base3.0.8.bn2.num_batches_tracked', 'RCNN_base3.0.13.bn3.num_batches_tracked', 'RCNN_base2.0.1.bn2.num_batches_tracked', 'netD2.bn3.num_batches_tracked', 'RCNN_top.0.0.bn3.num_batches_tracked', 'RCNN_base3.0.0.bn3.num_batches_tracked', 'RCNN_top.0.2.bn2.num_batches_tracked', 'RCNN_base3.0.14.bn3.num_batches_tracked', 'netD3.bn2.num_batches_tracked', 'RCNN_base2.0.1.bn3.num_batches_tracked', 'RCNN_base3.0.16.bn1.num_batches_tracked', 'RCNN_base3.0.15.bn1.num_batches_tracked', 'RCNN_base3.0.9.bn1.num_batches_tracked'

When I ignore this error and test, the mAP is only 40.4. How to get the correct mAP?

AP for aeroplane = 0.3302
AP for bicycle = 0.4909
AP for bird = 0.3590
AP for boat = 0.2591
AP for bottle = 0.3835
AP for bus = 0.5573
AP for car = 0.3868
AP for cat = 0.1590
AP for chair = 0.3883
AP for cow = 0.5839
AP for diningtable = 0.1884
AP for dog = 0.2369
AP for horse = 0.3690
AP for motorbike = 0.6995
AP for person = 0.6064
AP for pottedplant = 0.4975
AP for sheep = 0.2572
AP for sofa = 0.3483
AP for train = 0.4715
AP for tvmonitor = 0.5138
Mean AP = 0.4043

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions