Skip to content

Commit efdf956

Browse files
authored
README: typos fixed, example corrected (#159)
1 parent f474d43 commit efdf956

File tree

3 files changed

+11
-6
lines changed

3 files changed

+11
-6
lines changed

CHANGELOG.md

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,10 @@
11
# Changelog
22

3+
## 15.3.1
4+
- README:
5+
- typos corrected
6+
- LogisticRegressor example corrected
7+
38
## 15.3.0
49
- RSS metric added
510

README.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -21,11 +21,11 @@ the lib, please do not use it in a browser.
2121

2222
- #### Classification algorithms
2323
- [LogisticRegressor](https://github.com/gyrdym/ml_algo/blob/master/lib/src/classifier/logistic_regressor/logistic_regressor.dart).
24-
A class that performs linear binary classification of data. To use this kind of classifier your data have to be
24+
A class that performs linear binary classification of data. To use this kind of classifier your data has to be
2525
[linearly separable](https://en.wikipedia.org/wiki/Linear_separability).
2626

2727
- [SoftmaxRegressor](https://github.com/gyrdym/ml_algo/blob/master/lib/src/classifier/softmax_regressor/softmax_regressor.dart).
28-
A class that performs linear multiclass classification of data. To use this kind of classifier your data have to be
28+
A class that performs linear multiclass classification of data. To use this kind of classifier your data has to be
2929
[linearly separable](https://en.wikipedia.org/wiki/Linear_separability).
3030

3131
- [DecisionTreeClassifier](https://github.com/gyrdym/ml_algo/blob/master/lib/src/classifier/decision_tree_classifier/decision_tree_classifier.dart)
@@ -121,7 +121,7 @@ final createClassifier = (DataFrame samples) =>
121121
optimizerType: LinearOptimizerType.gradient,
122122
iterationsLimit: 90,
123123
learningRateType: LearningRateType.decreasingAdaptive,
124-
batchSize: trainSamples.rows.length,
124+
batchSize: samples.rows.length,
125125
probabilityThreshold: 0.7,
126126
);
127127
```
@@ -134,7 +134,7 @@ be run this amount of times
134134
- `learningRateType` - a strategy for learning rate update. In our case the learning rate will decrease after every
135135
iteration
136136
- `batchSize` - size of data (in rows) that will be used per each iteration. As we have a really small dataset we may use
137-
full-batch gradient ascent, that's why we used `trainSamples.rows.length` here - the total amount of data.
137+
full-batch gradient ascent, that's why we used `samples.rows.length` here - the total amount of data.
138138
- `probabilityThreshold` - lower bound for positive label probability
139139

140140
If we want to evaluate the learning process more thoroughly, we may pass `collectLearningData` argument to the classifier
@@ -247,7 +247,7 @@ void main() async {
247247
optimizerType: LinearOptimizerType.gradient,
248248
iterationsLimit: 90,
249249
learningRateType: LearningRateType.decreasingAdaptive,
250-
batchSize: trainSamples.rows.length,
250+
batchSize: samples.rows.length,
251251
probabilityThreshold: 0.7,
252252
);
253253
final scores = await validator.evaluate(createClassifier, MetricType.accuracy);

pubspec.yaml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
name: ml_algo
22
description: Machine learning algorithms, Machine learning models performance evaluation functionality
3-
version: 15.3.0
3+
version: 15.3.1
44
homepage: https://github.com/gyrdym/ml_algo
55

66
environment:

0 commit comments

Comments
 (0)