Skip to content

Commit 4127052

Browse files
authored
RMSE metric: documentation improved (#154)
1 parent c9e063c commit 4127052

File tree

3 files changed

+18
-6
lines changed

3 files changed

+18
-6
lines changed

CHANGELOG.md

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,10 @@
11
# Changelog
22

3+
## 15.2.3
4+
- Documentation for RMSE metric improved
5+
36
## 15.2.2
4-
- Documentation for MAPE metrics improved
7+
- Documentation for MAPE metric improved
58

69
## 15.2.1
710
- `classificationMetrics` constant list added

lib/src/metric/metric_type.dart

Lines changed: 13 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -4,10 +4,10 @@ enum MetricType {
44
/// is:
55
///
66
///
7-
/// ![{\mbox{Score}}={\frac{1}{n}}\sum_{{t=1}}^{n}\left|{\frac{Y_{t}-\widehat{Y}_{t}}{Y_{t}}}\right|](https://latex.codecogs.com/gif.latex?%7B%5Cmbox%7BScore%7D%7D%3D%7B%5Cfrac%7B1%7D%7Bn%7D%7D%5Csum_%7B%7Bt%3D1%7D%7D%5E%7Bn%7D%5Cleft%7C%7B%5Cfrac%7BY_%7Bt%7D-%5Cwidehat%7BY%7D_%7Bt%7D%7D%7BY_%7Bt%7D%7D%7D%5Cright%7C)
7+
/// ![{\mbox{Score}}={\frac{1}{n}}\sum_{{t=1}}^{n}\left|{\frac{y_{t}-\widehat{y}_{t}}{y_{t}}}\right|](https://latex.codecogs.com/gif.latex?%7B%5Cmbox%7BScore%7D%7D%3D%7B%5Cfrac%7B1%7D%7Bn%7D%7D%5Csum_%7B%7Bt%3D1%7D%7D%5E%7Bn%7D%5Cleft%7C%7B%5Cfrac%7By_%7Bt%7D-%5Cwidehat%7By%7D_%7Bt%7D%7D%7By_%7Bt%7D%7D%7D%5Cright%7C)
88
///
99
///
10-
/// where Y - original value, Y with hat - predicted one
10+
/// where y - original value, y with hat - predicted one
1111
///
1212
///
1313
/// The less the score produced by the metric, the better the prediction's
@@ -17,8 +17,17 @@ enum MetricType {
1717
/// can produce scores which are greater than 1.
1818
mape,
1919

20-
/// Root mean squared error, a regression metric. The less the score produced
21-
/// by the metric, the better the prediction's quality is. The metric produces
20+
/// Root mean squared error (RMSE), a regression metric. The formula is:
21+
///
22+
///
23+
/// ![{\mbox{Score}}=\sqrt{\frac{1}{n}\sum_{{t=1}}^{n}({\widehat{y}_{t} - y_{t}})^2}](https://latex.codecogs.com/gif.latex?%7B%5Cmbox%7BScore%7D%7D%3D%5Csqrt%7B%5Cfrac%7B1%7D%7Bn%7D%5Csum_%7B%7Bt%3D1%7D%7D%5E%7Bn%7D%28%7B%5Cwidehat%7By%7D_%7Bt%7D%20-%20y_%7Bt%7D%7D%29%5E2%7D)
24+
///
25+
///
26+
/// where `y` is an original value, `y` with hat - predicted one
27+
///
28+
///
29+
/// The less the score
30+
/// produced by the metric, the better the prediction's quality is. The metric produces
2231
/// scores within the range [0, +Infinity]
2332
rmse,
2433

pubspec.yaml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
name: ml_algo
22
description: Machine learning algorithms, Machine learning models performance evaluation functionality
3-
version: 15.2.2
3+
version: 15.2.3
44
homepage: https://github.com/gyrdym/ml_algo
55

66
environment:

0 commit comments

Comments
 (0)