|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# LlamaIndex\n", |
| 8 | + "\n", |
| 9 | + "## Overview\n", |
| 10 | + "\n", |
| 11 | + "This is a Quick Start guide that shows how to use Guardrails alongside LlamaIndex. As you'll see, the LlamaIndex portion comes directly from their starter examples [here](https://docs.llamaindex.ai/en/stable/getting_started/starter_example/). Our approach to intergration for LlamaIndex, similar to our LangChain integration, is the make the interaction feel as native to the tool as possible." |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "markdown", |
| 16 | + "metadata": {}, |
| 17 | + "source": [ |
| 18 | + "## Installation\n", |
| 19 | + "Install LlamaIndex and a version of Guardrails with LlamaIndex support." |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "code", |
| 24 | + "execution_count": 3, |
| 25 | + "metadata": {}, |
| 26 | + "outputs": [ |
| 27 | + { |
| 28 | + "name": "stdout", |
| 29 | + "output_type": "stream", |
| 30 | + "text": [ |
| 31 | + "Found existing installation: guardrails-ai 0.6.0\n", |
| 32 | + "Uninstalling guardrails-ai-0.6.0:\n", |
| 33 | + " Successfully uninstalled guardrails-ai-0.6.0\n" |
| 34 | + ] |
| 35 | + } |
| 36 | + ], |
| 37 | + "source": [ |
| 38 | + "! pip uninstall guardrails-ai -y" |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "code", |
| 43 | + "execution_count": null, |
| 44 | + "metadata": {}, |
| 45 | + "outputs": [], |
| 46 | + "source": [ |
| 47 | + "! pip install llama-index -q\n", |
| 48 | + "# ! pip install \"guardrails-ai>=0.6.1\"\n", |
| 49 | + "! pip install /Users/calebcourier/Projects/guardrails -q" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "markdown", |
| 54 | + "metadata": {}, |
| 55 | + "source": [ |
| 56 | + "Install a couple validators from the Guardrails Hub that we'll use to guard the query outputs." |
| 57 | + ] |
| 58 | + }, |
| 59 | + { |
| 60 | + "cell_type": "code", |
| 61 | + "execution_count": 13, |
| 62 | + "metadata": {}, |
| 63 | + "outputs": [ |
| 64 | + { |
| 65 | + "name": "stdout", |
| 66 | + "output_type": "stream", |
| 67 | + "text": [ |
| 68 | + "Installing hub:\u001b[35m/\u001b[0m\u001b[35m/guardrails/\u001b[0m\u001b[95mdetect_pii...\u001b[0m\n", |
| 69 | + "✅Successfully installed guardrails/detect_pii version \u001b[1;36m0.0\u001b[0m.\u001b[1;36m5\u001b[0m!\n", |
| 70 | + "\n", |
| 71 | + "\n", |
| 72 | + "Installing hub:\u001b[35m/\u001b[0m\u001b[35m/guardrails/\u001b[0m\u001b[95mcompetitor_check...\u001b[0m\n", |
| 73 | + "✅Successfully installed guardrails/competitor_check version \u001b[1;36m0.0\u001b[0m.\u001b[1;36m1\u001b[0m!\n", |
| 74 | + "\n", |
| 75 | + "\n" |
| 76 | + ] |
| 77 | + } |
| 78 | + ], |
| 79 | + "source": [ |
| 80 | + "! guardrails hub install hub://guardrails/detect_pii --no-install-local-models -q\n", |
| 81 | + "! guardrails hub install hub://guardrails/competitor_check --no-install-local-models -q" |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "markdown", |
| 86 | + "metadata": {}, |
| 87 | + "source": [ |
| 88 | + "Download some sample data from the LlamaIndex docs." |
| 89 | + ] |
| 90 | + }, |
| 91 | + { |
| 92 | + "cell_type": "code", |
| 93 | + "execution_count": 6, |
| 94 | + "metadata": {}, |
| 95 | + "outputs": [ |
| 96 | + { |
| 97 | + "name": "stdout", |
| 98 | + "output_type": "stream", |
| 99 | + "text": [ |
| 100 | + " % Total % Received % Xferd Average Speed Time Time Time Current\n", |
| 101 | + " Dload Upload Total Spent Left Speed\n", |
| 102 | + "100 75042 100 75042 0 0 959k 0 --:--:-- --:--:-- --:--:-- 964k\n" |
| 103 | + ] |
| 104 | + } |
| 105 | + ], |
| 106 | + "source": [ |
| 107 | + "! mkdir -p ./data\n", |
| 108 | + "! curl https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt > ./data/paul_graham_essay.txt" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "markdown", |
| 113 | + "metadata": {}, |
| 114 | + "source": [ |
| 115 | + "## Index Setup\n", |
| 116 | + "\n", |
| 117 | + "First we'll load some data and build an index as shown in the [starter tutorial](https://docs.llamaindex.ai/en/stable/getting_started/starter_example/)" |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "code", |
| 122 | + "execution_count": 7, |
| 123 | + "metadata": {}, |
| 124 | + "outputs": [], |
| 125 | + "source": [ |
| 126 | + "import os.path\n", |
| 127 | + "from llama_index.core import (\n", |
| 128 | + " VectorStoreIndex,\n", |
| 129 | + " SimpleDirectoryReader,\n", |
| 130 | + " StorageContext,\n", |
| 131 | + " load_index_from_storage,\n", |
| 132 | + ")\n", |
| 133 | + "\n", |
| 134 | + "# check if storage already exists\n", |
| 135 | + "PERSIST_DIR = \"./storage\"\n", |
| 136 | + "if not os.path.exists(PERSIST_DIR):\n", |
| 137 | + " # load the documents and create the index\n", |
| 138 | + " documents = SimpleDirectoryReader(\"data\").load_data()\n", |
| 139 | + " index = VectorStoreIndex.from_documents(documents)\n", |
| 140 | + " # store it for later\n", |
| 141 | + " index.storage_context.persist(persist_dir=PERSIST_DIR)\n", |
| 142 | + "else:\n", |
| 143 | + " # load the existing index\n", |
| 144 | + " storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)\n", |
| 145 | + " index = load_index_from_storage(storage_context)" |
| 146 | + ] |
| 147 | + }, |
| 148 | + { |
| 149 | + "cell_type": "markdown", |
| 150 | + "metadata": {}, |
| 151 | + "source": [ |
| 152 | + "## Guard Setup\n", |
| 153 | + "\n", |
| 154 | + "Next we'll create our Guard and assign some validators to check the output from our queries." |
| 155 | + ] |
| 156 | + }, |
| 157 | + { |
| 158 | + "cell_type": "code", |
| 159 | + "execution_count": 8, |
| 160 | + "metadata": {}, |
| 161 | + "outputs": [], |
| 162 | + "source": [ |
| 163 | + "from guardrails import Guard\n", |
| 164 | + "from guardrails.hub import CompetitorCheck, DetectPII\n", |
| 165 | + "\n", |
| 166 | + "guard = Guard().use(\n", |
| 167 | + " CompetitorCheck(\n", |
| 168 | + " competitors=[\"Fortran\", \"Ada\", \"Pascal\"],\n", |
| 169 | + " on_fail=\"fix\"\n", |
| 170 | + " )\n", |
| 171 | + ").use(DetectPII(pii_entities=\"pii\", on_fail=\"fix\"))" |
| 172 | + ] |
| 173 | + }, |
| 174 | + { |
| 175 | + "cell_type": "markdown", |
| 176 | + "metadata": {}, |
| 177 | + "source": [ |
| 178 | + "## Querying The Index\n", |
| 179 | + "\n", |
| 180 | + "To demonstrate it's plug-and-play capabilities, first we'll query the index un-guarded." |
| 181 | + ] |
| 182 | + }, |
| 183 | + { |
| 184 | + "cell_type": "code", |
| 185 | + "execution_count": 9, |
| 186 | + "metadata": {}, |
| 187 | + "outputs": [ |
| 188 | + { |
| 189 | + "name": "stdout", |
| 190 | + "output_type": "stream", |
| 191 | + "text": [ |
| 192 | + "The author worked on writing short stories and programming, starting with early attempts on an IBM 1401 using Fortran in 9th grade, and later transitioning to microcomputers like the TRS-80 and Apple II to write games, rocket prediction programs, and a word processor.\n" |
| 193 | + ] |
| 194 | + } |
| 195 | + ], |
| 196 | + "source": [ |
| 197 | + "# Use index on it's own\n", |
| 198 | + "query_engine = index.as_query_engine()\n", |
| 199 | + "response = query_engine.query(\"What did the author do growing up?\")\n", |
| 200 | + "print(response)" |
| 201 | + ] |
| 202 | + }, |
| 203 | + { |
| 204 | + "cell_type": "markdown", |
| 205 | + "metadata": {}, |
| 206 | + "source": [ |
| 207 | + "Now we'll set up a guarded engine, and re-query the index to see how Guardrails applies the fixes we specified when assigning our validators to the Guard." |
| 208 | + ] |
| 209 | + }, |
| 210 | + { |
| 211 | + "cell_type": "code", |
| 212 | + "execution_count": 11, |
| 213 | + "metadata": {}, |
| 214 | + "outputs": [ |
| 215 | + { |
| 216 | + "name": "stdout", |
| 217 | + "output_type": "stream", |
| 218 | + "text": [ |
| 219 | + "The author worked on writing short stories and programming, starting with early attempts on an IBM 1401 using [COMPETITOR] in 9th <URL>er, the author transitioned to microcomputers, building a Heathkit kit and eventually getting a TRS-80 to write simple games and <URL>spite enjoying programming, the author initially planned to study philosophy in college but eventually switched to AI due to a lack of interest in philosophy courses.\n" |
| 220 | + ] |
| 221 | + } |
| 222 | + ], |
| 223 | + "source": [ |
| 224 | + "# Use index with Guardrails\n", |
| 225 | + "from guardrails.integrations.llama_index import GuardrailsQueryEngine\n", |
| 226 | + "\n", |
| 227 | + "guardrails_query_engine = GuardrailsQueryEngine(engine=query_engine, guard=guard)\n", |
| 228 | + "\n", |
| 229 | + "response = guardrails_query_engine.query(\"What did the author do growing up?\")\n", |
| 230 | + "print(response)\n", |
| 231 | + " " |
| 232 | + ] |
| 233 | + }, |
| 234 | + { |
| 235 | + "cell_type": "markdown", |
| 236 | + "metadata": {}, |
| 237 | + "source": [ |
| 238 | + "The GuardrailsEngine can also be used with LlamaIndex's chat engine, not just the query engine." |
| 239 | + ] |
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_type": "code", |
| 243 | + "execution_count": 12, |
| 244 | + "metadata": {}, |
| 245 | + "outputs": [ |
| 246 | + { |
| 247 | + "name": "stdout", |
| 248 | + "output_type": "stream", |
| 249 | + "text": [ |
| 250 | + "The author worked on writing short stories and programming while growing <URL>ey started with early attempts on an IBM 1401 using [COMPETITOR] in 9th <URL>er, they transitioned to microcomputers, building simple games and a word processor on a TRS-80 in <DATE_TIME>.\n" |
| 251 | + ] |
| 252 | + } |
| 253 | + ], |
| 254 | + "source": [ |
| 255 | + "# For chat engine\n", |
| 256 | + "from guardrails.integrations.llama_index import GuardrailsChatEngine\n", |
| 257 | + "chat_engine = index.as_chat_engine()\n", |
| 258 | + "guardrails_chat_engine = GuardrailsChatEngine(engine=chat_engine, guard=guard)\n", |
| 259 | + "\n", |
| 260 | + "response = guardrails_chat_engine.chat(\"Tell me what the author did growing up.\")\n", |
| 261 | + "print(response)" |
| 262 | + ] |
| 263 | + } |
| 264 | + ], |
| 265 | + "metadata": { |
| 266 | + "kernelspec": { |
| 267 | + "display_name": ".venv", |
| 268 | + "language": "python", |
| 269 | + "name": "python3" |
| 270 | + }, |
| 271 | + "language_info": { |
| 272 | + "codemirror_mode": { |
| 273 | + "name": "ipython", |
| 274 | + "version": 3 |
| 275 | + }, |
| 276 | + "file_extension": ".py", |
| 277 | + "mimetype": "text/x-python", |
| 278 | + "name": "python", |
| 279 | + "nbconvert_exporter": "python", |
| 280 | + "pygments_lexer": "ipython3", |
| 281 | + "version": "3.12.4" |
| 282 | + } |
| 283 | + }, |
| 284 | + "nbformat": 4, |
| 285 | + "nbformat_minor": 2 |
| 286 | +} |
0 commit comments