Skip to content

A game to find putatively optimal packings in complex projective space with the goal of proving optimality of as many packings as possible.

Notifications You must be signed in to change notification settings

gskopp/GameofSloanes

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Game of Sloanes

A game to find putatively optimal packings in complex projective space with the goal of proving optimality of as many packings as possible. Formerly hosted here.

This project is licensed under the terms of the Creative Commons Attribution 4.0. Please cite Game of Sloanes; https://github.com/gnikylime/GameofSloanes/; Authors: John Jasper, Emily J. King, and Dustin G. Mixon

This repository concerns the problem of packing $n$ lines, represented by unit vectors, through the origin of $C^d$ such that the angles between the lines are as large as possible. The problem has applications in fields such as compressed sensing, digital fingerprinting, quantum state tomography, and multiple description coding.

Let $\Phi=\left(\varphi_j\right)_{j=1}^n$ be a set of unit norm vectors. The coherence $\mu$ of $\Phi$ is defined to be
$$\mu\left(\Phi\right) = \max_{1\leq j < k\leq n} \vert\langle \varphi_j, \varphi_k \rangle\vert.$$

We call $\Phi$ a Grassmannian frame or (optimal) projective packing if
$$\Phi \in \text{argmin}\lbrace \mu(\Psi) \text{ } : \text{ } \Psi \text{ } n \text{ unit norm vectors in }C^d \rbrace.$$

For a review of results about complex Grassmannian frames, see the paper [JKM19].

Submissions

If you have a collection of $n$ vectors in $C^d$ which has a better coherence (to at least the eighth decimal point) than what is listed above, we welcome you to submit it. We will accept sporadic packings for $d$ and $n$ not listed above if there is evidence that the packing is truly optimal.
Submissions must be in the following format. A .txt file consisting of a newline-separated list of the $2 d n$ entries of the (unit-norm) vectors, starting with the real parts of the components of the first vector, then the real parts of the components of the second vector, and so on before working through the imaginary parts of each vector.
The filenames must be of the form `dxn_init.txt`, where `d` is the dimension, `n` is the number of vectors and `init` is a three- or four-character (i.e., only alphabet characters) string to list in the Creator column.
Please make a branch of the repository and put the new packings in the Packings directory. Then do a pull request. If you would like to send additional information, write to our Gmail account asongofvectorsandangles.

Open Problems

  • Conjecture: The frames of $8$ vectors in $C^3$ that result from removing a single vector from any of the known equiangular tight frames of $9$ vectors in $C^3$ are Grassmannian frames.
    Sources: [JKM19]
    (independently conjectured by Henry Cohn)
  • Conjecture: Assume that an equiangular tight frame of $d^2$ vectors in $C^d$ exists. Then removing one vector from that equiangular tight frame results in a Grassmannian frame of $d^2-1$ vectors in $C^d$.
    Source: Conjectured by Henry Cohn.
  • Conjecture: The following is a Grassmannian frame of $5$ vectors in $C^3$:

    $$\left(\matrix{ a & b & b & c & c \cr b & a & b & c w & cw^2 \cr b & b & a & cw^2 & cw}\right),$$
    $$a = \frac{\sqrt{13}+\sqrt{2+\sqrt{13}}-1}{3\sqrt{3}}, \quad b = \sqrt{\frac{1-a^2}{2}}, \quad c = \frac{1}{\sqrt{3}},\quad w=e^{2\pi i/3}.$$ Source: [JKM19]

  • Conjecture: The configuration of $85$ vectors in $C^5$ listed numerically in the leader board and explicitly constructed as the union of the root vectors corresponding to the $45$ $2$-reflections which generate the unitary reflection group $W(K_5)$ and $40$ vectors representing each antipodal pair of minimal vectors of the Coxeter-Todd lattice $O_{10}$ is a Grassmannian frame.
    Source: [BGM+22]
  • Open Problem: Generalize the Levenstein and Bukh-Cox bounds to general subspace packings.
    Source: [JKM19]

Leader Board

Packings for all $2 \leq d \leq 7$ and $d+2 \leq n \leq 49$, plus sporadic packings.

Legend and Further Notes

  • The Grassmannian frames for $d = n$ are orthonormal bases and for $d+1 = n$ are regular simplices, hence we do not list them.
  • Best Coherence gives the best coherence of the packings which have been submitted for that $d$ and $n$. A new packing is considered better if it beats the previous packing in at least the eighth decimal place.
  • Lower Bound gives the maximum of whichever of the Bukh-Cox, Welch-Rankin, orthoplex, and/or Levenstein bounds are valid and largest for that $d$ and $n$.
  • Creator gives a 3–4 character string indicating the creator of the packing.
    • etf: A known equiangular tight frame. See, e.g., [FM16] and the references therein.
    • orth: The maximal known set of vectors in $`C^d`$ which saturate the orthoplex bound. When $`d`$ is a prime power, this collection is a maximal set of mutually unbiased bases consisting of $`d^2 + d`$ vectors. See, e.g., [KlRo04] and the reference therein.
    • Lev: A set of vectors which saturate the (second) Levenstein bound.
    • B-C: A set of vectors which saturate the Bukh-Cox bound.
    • AUTO: Removing a vector from the best known packing for $d$ and $n+1$ results in a better coherence than any of the submitted packings for $d$ and $n$.
    • njas: Grassmannian frames in $C^2$ are equivalent to optimal spherical codes in $S^2$. The configurations labeled with njas are best known spherical codes in $S^2$ downloaded from [Sloane1].
    • dgm, ejk, and JJ: Dustin G. Mixon, Emily J. King, and John Jasper.
    • hlc: Henry Cohn.
    • gKmR: Gene Kopp and Michael Ren.
    • BGM+22: From the paper [BGM+22].
    • CID+21: From the paper [CID+21]. (Has since been knocked off the leader board.)
  • Text File contains a link to a .txt file with the best submitted packing formated as a newline-separated list of the $2 d n$ entries of the vectors, starting with the real parts of the first vector, then the real parts of the second vector, and so on until the imaginary parts of the last vector.
  • Notes contain the following information:
    • ○ indicates that the configuration is provably optimal.
    • △ indicates that the configuration is conjectured to be optimal.
    • When pertinent, a reference to a paper or website is listed.
  • For a listing of numerically approximated and explicitly defined optimal packings when $n=d^2$, see, e.g., [FSDH], [Grassl], and [Flamm].

d n Best Coherence Lower Bound Creator Text File Notes
240.577350270.57735027etfFile
250.707106780.70710678AUTOFile
260.707106780.70710678orthFile
270.777861910.73029674njasFile
280.794104490.75000000njasFile
290.816496580.77777778njasFile
2100.837972050.80000000njasFile
2110.850650810.81818182njasFile
2120.850650810.83333333njasFile
2130.878247260.84615385njasFile
2140.884293590.85714286njasFile
2150.892358080.86666667njasFile
2160.897857060.87500000njasFile
2170.902245650.88235294njasFile
2180.907936070.88888889njasFile
2190.914635690.89473684njasFile
2200.915553700.90000000njasFile
2210.921818430.90476190njasFile
2220.924744900.90909091njasFile
2230.928129030.91304348njasFile
2240.928191380.91666667njasFile
2250.934718840.92000000njasFile
2260.936557040.92307692njasFile
2270.937653780.92592593njasFile
2280.941602430.92857143njasFile
2290.943472690.93103448njasFile
2300.943809270.93333333njasFile
2310.946339950.93548387njasFile
2320.946999630.93750000njasFile
2330.950367720.93939394njasFile
2340.951573520.94117647njasFile
2350.952874010.94285714njasFile
2360.953217760.94444444njasFile
2370.955220520.94594595njasFile
2380.955662930.94736842njasFile
2390.957598900.94871795njasFile
2400.958426330.95000000njasFile
2410.959488490.95121951njasFile
2420.960034260.95238095njasFile
2430.961043410.95348837njasFile
2440.961301560.95454545njasFile
2450.962873170.95555556njasFile
2460.963725630.95652174njasFile
2470.964137530.95744681njasFile
2480.964181590.95833333njasFile
2490.966098200.95918367njasFile
350.434258550.41406779dgmFile
360.447213600.44721360etfFile
370.471404520.47140452etfFile
380.500000000.48795004AUTOFile
390.500000000.50000000etfFile
3100.577350270.57735027AUTOFile
3110.577350270.57735027AUTOFile
3120.577350270.57735027orthFile
3130.622143870.59160798dgmFile
3140.637630530.60302269JJFile
3150.640388200.61237244JJFile
3160.647754480.62017367hlcFile
3170.654366360.62678317JJFile
3180.662957890.63245553hlcFile
3190.676473270.63737744hlcFile
3200.686463890.64168895hlcFile
3210.687971700.64549722hlcFile
3220.703574730.64888568hlcFile
3230.709648400.65192024hlcFile
3240.719219270.65465367hlcFile
3250.725665320.65712874hlcFile
3260.729738960.65938047hlcFile
3270.734176900.66143783hlcFile
3280.736821830.66332496hlcFile
3290.741501960.66506217hlcFile
3300.744809380.66666667hlcFile
3310.745327130.66815310hlcFile
3320.748130170.66953406hlcFile
3330.753018570.67082039hlcFile
3340.756861710.67202151hlcFile
3350.759655580.67314560hlcFile
3360.760883620.67419986hlcFile
3370.766191230.67519060hlcFile
3380.772220530.67612340hlcFile
3390.775075690.67974369hlcFile
3400.777939110.68377223hlcFile
3410.778488070.68765248hlcFile
3420.778531670.69139330hlcFile
3430.783708300.69500286hlcFile
3440.786894370.69848866AUTOFile
3450.786894370.70185760JJFile
3460.794386610.70511609hlcFile
3470.797037670.70827002hlcFile
3480.799458750.71132487hlcFile
3490.801567080.71428571hlcFile
460.327326840.32278096dgmFile
470.353553390.35355339etfFile
480.377964470.37796447etfFile
490.401850120.39528471hlcFile
4100.410778120.40824829hlcFile
4110.425437780.41833001hlcFile
4120.427742320.42640143JJFile
4130.433012700.43301270etfFile
4140.447213600.43852901AUTOFile
4150.447213600.44320263AUTOFile
4160.447213600.44721360etfFile
4170.500000000.50000000AUTOFile
4180.500000000.50000000AUTOFile
4190.500000000.50000000AUTOFile
4200.500000000.50000000orthFile
4210.537215790.50874702hlcFile
4220.545438200.51639778hlcFile
4230.550462390.52314836hlcFile
4240.557016050.52915026hlcFile
4250.566493110.53452248hlcFile
4260.571752640.53935989hlcFile
4270.574998580.54373907hlcFile
4280.577182880.54772256hlcFile
4290.577339090.55136195hlcFile
4300.577350190.55470020hlcFile
4310.577350270.55777335AUTOFile
4320.577350270.56061191AUTOFile
4330.577350270.56324185AUTOFile
4340.577350270.56568542AUTOFile
4350.577350270.56796183AUTOFile
4360.577350270.57008771AUTOFile
4370.577350270.57207755AUTOFile
4380.577350270.57394404AUTOFile
4390.577350270.57569833AUTOFile
4400.577350270.57735027LevFile
4410.621811580.57890857hlcFile
4420.624182640.58038100hlcFile
4430.626911170.58177447hlcFile
4440.630282660.58309519hlcFile
4450.632073300.58434871hlcFile
4460.635835620.58554004hlcFile
4470.639816950.58667371hlcFile
4480.643427720.58775381hlcFile
4490.646328890.58878406hlcFile
4640.697492290.60000000ejkFile
570.266356810.26447408dgmFile
580.295208080.29277002hlcFile
590.320117140.31622777hlcFile
5100.333333330.33333333etfFile
5110.346410160.34641016etfFile
5120.357389250.35675303hlcFile
5130.367602320.36514837JJFile
5140.375674760.37210420hlcFile
5150.379936780.37796447hlcFile
5160.388092840.38297084hlcFile
5170.393535510.38729833hlcFile
5180.397630250.39107694dgmFile
5190.397630250.39440532AUTOFile
5200.397630250.39735971JJFile
5210.400000000.40000000etfFile
5220.408248290.40237391AUTOFile
5230.408248290.40451992AUTOFile
5240.408248290.40646942AUTOFile
5250.408248290.40824829etfFile
5260.447213600.44721360AUTOFile
5270.447213600.44721360AUTOFile
5280.447213600.44721360AUTOFile
5290.447213600.44721360AUTOFile
5300.447213600.44721360orthFile
5310.481595750.45291081hlcFile
5320.486881650.45812285hlcFile
5330.491024900.46291005hlcFile
5340.497594200.46732302hlcFile
5350.500000000.47140452AUTOFile
5360.500000000.47519096AUTOFile
5370.500000000.47871355AUTOFile
5380.500000000.48199920AUTOFile
5390.500000000.48507125AUTOFile
5400.500000000.48795004AUTOFile
5410.500000000.49065338AUTOFile
5420.500000000.49319696AUTOFile
5430.500000000.49559463AUTOFile
5440.500000000.49785866AUTOFile
5450.500000000.50000000LevFile
5460.527600560.50202841hlcFile
5470.537318710.50395263hlcFile
5480.540982300.50578054hlcFile
5490.543511000.50751922hlcFile
5500.561910710.50917508JJFile
5850.577350270.54006172BGMPFile△[BGM+22]
680.224009240.22400924B-CFile
690.250000000.25000000etfFile
6100.272203150.27216553hlcFile
6110.288675130.28867513etfFile
6120.301511340.30151134etfFile
6130.311824560.31180478hlcFile
6140.320316640.32025631hlcFile
6150.327396510.32732684hlcFile
6160.333333330.33333333etfFile
6170.339510910.33850160hlcFile
6180.344983460.34299717hlcFile
6190.349258300.34694433hlcFile
6200.352362570.35043832hlcFile
6210.356447140.35355339hlcFile
6220.359554410.35634832hlcFile
6230.365371690.35887028hlcFile
6240.369982520.36115756hlcFile
6250.372678000.36324158AUTOFile
6260.372678000.36514837AUTOFile
6270.372678000.36689969AUTOFile
6280.372678000.36851387AUTOFile
6290.372678000.37000643AUTOFile
6300.372678000.37139068AUTOFile
6310.372678000.37267800etfFile
6320.377964470.37387825AUTOFile
6330.377964470.37500000AUTOFile
6340.377964470.37605072AUTOFile
6350.377964470.37703695AUTOFile
6360.377964470.37796447etfFile
6370.408248290.40824829orthFile
6380.416840760.40824829hlcFile
6390.423015550.40824829hlcFile
6400.428433800.40824829hlcFile
6410.433849160.40824829hlcFile
6420.437313030.40824829hlcFile
6430.442100400.41217007hlcFile
6440.447517630.41585133hlcFile
6450.451324610.41931393hlcFile
6460.455814160.42257713hlcFile
6470.459696560.42565792hlcFile
6480.462797280.42857143hlcFile
6490.466094600.43133109hlcFile
790.196018460.19428362JJFile
7100.221572450.21951220hlcFile
7110.239318890.23904572hlcFile
7120.255104280.25482360hlcFile
7130.267272200.26726124hlcFile
7140.277350100.27735010etfFile
7150.285714290.28571429etfFile
7160.292793130.29277002hlcFile
7170.298859870.29880715hlcFile
7180.304170360.30403450hlcFile
7190.308847180.30860670hlcFile
7200.313345960.31264095hlcFile
7210.317337420.31622777gKmRFile
7220.321729120.31943828hlcFile
7230.325393070.32232919hlcFile
7240.329602690.32494624hlcFile
7250.332480070.32732684hlcFile
7260.333182700.32950179hlcFile
7270.333333330.33149677AUTOFile
7280.333333330.33333333etfFile
7290.340812280.33502970hlcFile
7300.346391210.33660139hlcFile
7310.349903100.33806170hlcFile
7320.352607180.33942212hlcFile
7330.353553390.34069257AUTOFile
7340.353553390.34188173AUTOFile
7350.353553390.34299717AUTOFile
7360.353553390.34404556AUTOFile
7370.353553390.34503278AUTOFile
7380.353553390.34596404AUTOFile
7390.353553390.34684399AUTOFile
7400.353553390.34767675AUTOFile
7410.353553390.34846603AUTOFile
7420.353553390.34921515AUTOFile
7430.353553390.34992711AUTOFile
7440.353553390.35060460AUTOFile
7450.353553390.35125009AUTOFile
7460.353553390.35186578AUTOFile
7470.353553390.35245369AUTOFile
7480.353553390.35301567AUTOFile
7490.353553390.35355339etfFile
8150.250000000.25000000etfFile
8570.330718910.33071891etfFile
8640.333333330.33333333etfFile
9130.192450090.19245009etfFile
9190.248452000.24845200etfFile
9370.293972370.29397237etfFile
9730.314269680.31426968etfFile
9810.316227770.31622777etfFile
10190.223606800.22360680etfFile
10250.250000000.25000000etfFile
10910.300000000.30000000etfFile
101000.301511340.30151134etfFile
11230.222680890.22268089etfFile
111210.288675130.28867513etfFile
12160.149071200.14907120etfFile
12230.204124150.20412415etfFile
12450.250000000.25000000etfFile
16210.125000000.12500000etfFile
16800.250000000.22501758JJFile

Last updated: 2025-06-04.

Code

See the readme file in the Matlab directory. We also encourage submission of code in other languages. Please create a branch and add a directory named `LanguageTools` where `Language` is the language the code is written in.

Papers

Review Paper

[JKM19] John Jasper, Emily J. King, and Dustin G. Mixon: “Game of Sloanes: Best known packings in complex projective space.” Wavelets and Sparsity XVIII, SPIE Proceedings 11138, 416–425 [arXiv]

Further Literature and Websites

[BGM+22] Dmitriy Bilyk, Alexey Glazyrin, Ryan Matzke, Josiah Park, and Oleksandr Vlasiuk: “Optimal measures for $p$-frame energies on spheres.” Rev. Mat. Iberoam. 38(4), 1129–1160 (2022)
[CID+21] Diego Cuevas, Carlos Beltrán, Ignacio Santamaria, Vít Tuček, and Gunnar Peters: “A Fast Algorithm for Designing Grassmannian Constellations.” (2021) https://gtas.unican.es/files/pub/non_coherent_wsa21_full_paper.pdf, Conference: WSA 2021 - 25th International ITG Workshop on Smart Antennas
[FM16] Matt Fickus and Dustin G. Mixon: “Tables of the existence of equiangular tight frames.” (2016) [arXiv]
[Flamm] Steve Flammia: “Exact SIC fiducial vectors.” http://www.physics.usyd.edu.au/~sflammia/SIC/
[FSDH] Christopher Fuchs, Blake Stacey, John DeBrota, and Michael Hoang: “QBism: Quantum Theory as a Hero's Handbook: SIC-POVM Solutions.” http://www.physics.umb.edu/Research/QBism/solutions.html
[Grassl] Markus Grassl and Andrew J. Scott: “SIC-POVMs” http://sicpovm.markus-grassl.de/
[KlRo04] Andreas Klappenecker and Martin Rötteler: “Constructions of mutually unbiased bases.” (2004) in Finite fields and applications, Lecture Notes in Comput. Sci. 2948, 137–144, Springer, Berlin. [arXiv]
[MeDa14a] Ahmed Medra and Timothy N. Davidson: “Flexible codebook design for limited feedback systems via sequential smooth optimization on the Grassmannian manifold.” IEEE Trans. Signal Process. 62(5), 1305–1318 (2014)
[MeDa14b] Ahmed Medra and Timothy N. Davidson: “Flexible codebook design for limited feedback systems.” http://www.ece.mcmaster.ca/~davidson/pubs/Flexible_codebook_design.html
[Sloane1] Neil J. A. Sloane: “Spherical codes.” http://neilsloane.com/packings/
[Sloane2] Neil J. A. Sloane: “How to pack lines, planes, $3$-spaces, etc.” http://neilsloane.com/grass/
[TDHS05] Joel A. Tropp, Inderjit S. Dhillon, Robert W. Heath, Jr., and Thomas Strohmer: “Designing structured tight frames via alternating projection.” IEEE Trans. Info. Theory 51(1), 188–209 (2005)

About

A game to find putatively optimal packings in complex projective space with the goal of proving optimality of as many packings as possible.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Mathematica 84.8%
  • MATLAB 15.2%