Skip to content

生成场景碰撞标签 #42

@kiwiwan

Description

@kiwiwan

首先感谢你们的杰出工作!
我尝试用数据集里的grasp_label及场景0000来生成场景的collision_label。原本我的想法是直接将整个场景所有物体的点级抓取构建为一个graspGroup,然后调用ModelFreeCollisionDetector函数得到colllision_mask,即为collision_labels。但是当我只将一个物体(id为0)的所有抓取构建为graspGroup,然后调用ModelFreeCollisionDetector函数时,遇到了内存不够的情况:
collision_detector.py", line 75, in detect targets = self.scene_points[np.newaxis,:,:] - T[:,np.newaxis,:] numpy.core._exceptions.MemoryError: Unable to allocate 19.5 TiB for an array with shape (49809600, 17901, 3) and data type float64
然后我将grasp_label里collision为True的抓取排除,都还剩下4332493个抓取,检测时还是会报超内存。这时我只能将这个graspGroup切片,每次50000左右,然后分别检测碰撞,这样会很慢,检测完一个物体都需要7,8个小时。
你们在生成场景的collision_label时,会碰到这样的问题吗?你们是怎么处理的呢?
另外,你们在生成场景的collision_label时ModelFreeCollisionDetector函数里场景点云的voxel_size设为多少呢?approach_dist,collision_thresh, empty_thresh,finger_width,finger_length等这些参数设为多少呢?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions