diff --git a/site/en/gemma/docs/codegemma/codegemma_flax_inference.ipynb b/site/en/gemma/docs/codegemma/codegemma_flax_inference.ipynb
index f121b7aee..85dc0f08e 100644
--- a/site/en/gemma/docs/codegemma/codegemma_flax_inference.ipynb
+++ b/site/en/gemma/docs/codegemma/codegemma_flax_inference.ipynb
@@ -48,13 +48,13 @@
"source": [
"
"
]
@@ -148,11 +148,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "XpSw-_4EEcoY",
- "outputId": "ff9d2cab-80e1-4e5f-b976-94769cd3e730"
+ "id": "XpSw-_4EEcoY"
},
"outputs": [
{
@@ -229,11 +225,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "j_QdPAGyO5zl",
- "outputId": "8181d17f-da02-4d1b-ce34-cbd048362007"
+ "id": "j_QdPAGyO5zl"
},
"outputs": [
{
@@ -257,11 +249,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "cjnXlLkWcHIy",
- "outputId": "79cfb87d-fef7-4eb5-f452-48294c352bd6"
+ "id": "cjnXlLkWcHIy"
},
"outputs": [
{
@@ -301,11 +289,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "JAwXvpzbuiB5",
- "outputId": "b526c792-1105-47ea-932d-3c8d3a1919bc"
+ "id": "JAwXvpzbuiB5"
},
"outputs": [
{
@@ -366,11 +350,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "TpyG5YW1EcoY",
- "outputId": "be890773-f521-45a5-d379-4036c9cbb3de"
+ "id": "TpyG5YW1EcoY"
},
"outputs": [
{
@@ -511,11 +491,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "S5F3fk22Ecod",
- "outputId": "283d6e07-1ea4-4240-ebc8-464263df9a4c"
+ "id": "S5F3fk22Ecod"
},
"outputs": [
{
@@ -558,11 +534,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "6zIQEruE5_FC",
- "outputId": "29e4e090-fd05-432d-ca13-bbc42443b958"
+ "id": "6zIQEruE5_FC"
},
"outputs": [
{
@@ -604,11 +576,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "SvaV4GU76M3t",
- "outputId": "76d55cf4-a586-4faa-cb8a-7968b7e8ada0"
+ "id": "SvaV4GU76M3t"
},
"outputs": [
{
@@ -675,15 +643,12 @@
"metadata": {
"accelerator": "TPU",
"colab": {
- "gpuType": "V28",
- "provenance": []
+ "name": "codegemma_flax_inference.ipynb",
+ "toc_visible": true
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
- },
- "language_info": {
- "name": "python"
}
},
"nbformat": 4,
diff --git a/site/en/gemma/docs/paligemma/fine-tuning-paligemma.ipynb b/site/en/gemma/docs/paligemma/fine-tuning-paligemma.ipynb
index 173d43115..dbb09ed6a 100644
--- a/site/en/gemma/docs/paligemma/fine-tuning-paligemma.ipynb
+++ b/site/en/gemma/docs/paligemma/fine-tuning-paligemma.ipynb
@@ -13,6 +13,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
+ "cellView": "form",
"id": "_fEE8rM9BUfS"
},
"outputs": [],
@@ -38,17 +39,17 @@
"source": [
"# Fine-tune PaliGemma with JAX and Flax\n",
"\n",
- "\u003ctable class=\"tfo-notebook-buttons\" align=\"left\"\u003e\n",
- "\u003ctd\u003e\n",
- "\u003ca target=\"_blank\" href=\"https://ai.google.dev/gemma/docs/paligemma/fine-tuning-paligemma\"\u003e\u003cimg src=\"https://ai.google.dev/static/site-assets/images/docs/notebook-site-button.png\" height=\"32\" width=\"32\" /\u003eView on ai.google.dev\u003c/a\u003e\n",
- "\u003c/td\u003e\n",
- "\u003ctd\u003e\n",
- "\u003ca target=\"_blank\" href=\"https://colab.research.google.com/github/google/generative-ai-docs/blob/main/site/en/gemma/docs/paligemma/fine-tuning-paligemma.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" /\u003eRun in Google Colab\u003c/a\u003e\n",
- "\u003c/td\u003e\n",
- "\u003ctd\u003e\n",
- "\u003ca target=\"_blank\" href=\"https://github.com/google/generative-ai-docs/blob/main/site/en/gemma/docs/paligemma/fine-tuning-paligemma.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView source on GitHub\u003c/a\u003e\n",
- "\u003c/td\u003e\n",
- "\u003c/table\u003e\n"
+ "\n"
]
},
{
@@ -117,8 +118,7 @@
"\n",
"To generate a Kaggle API key, open your [**Settings** page in Kaggle](https://www.kaggle.com/settings) and click **Create New Token**. This triggers the download of a `kaggle.json` file containing your API credentials.\n",
"\n",
- "Then, in Colab, select **Secrets** (🔑) in the left pane and add your Kaggle username and Kaggle API key. Store your username under the name `KAGGLE_USERNAME` and your API key under the name `KAGGLE_KEY`.\n",
- "\n"
+ "Then, in Colab, select **Secrets** (🔑) in the left pane and add your Kaggle username and Kaggle API key. Store your username under the name `KAGGLE_USERNAME` and your API key under the name `KAGGLE_KEY`.\n"
]
},
{
@@ -482,7 +482,7 @@
"\n",
" image = tf.constant(image)\n",
" image = tf.image.resize(image, (size, size), method='bilinear', antialias=True)\n",
- " return image.numpy() / 127.5 - 1.0 # [0, 255]-\u003e[-1,1]\n",
+ " return image.numpy() / 127.5 - 1.0 # [0, 255]->[-1,1]\n",
"\n",
"def preprocess_tokens(prefix, suffix=None, seqlen=None):\n",
" # Model has been trained to handle tokenized text composed of a prefix with\n",
@@ -622,12 +622,12 @@
" return f\"data:image/jpeg;base64,{image_b64}\"\n",
"\n",
"def render_example(image, caption):\n",
- " image = ((image + 1)/2 * 255).astype(np.uint8) # [-1,1] -\u003e [0, 255]\n",
+ " image = ((image + 1)/2 * 255).astype(np.uint8) # [-1,1] -> [0, 255]\n",
" return f\"\"\"\n",
- " \u003cdiv style=\"display: inline-flex; align-items: center; justify-content: center;\"\u003e\n",
- " \u003cimg style=\"width:128px; height:128px;\" src=\"{render_inline(image, resize=(64,64))}\" /\u003e\n",
- " \u003cp style=\"width:256px; margin:10px; font-size:small;\"\u003e{html.escape(caption)}\u003c/p\u003e\n",
- " \u003c/div\u003e\n",
+ " \n",
+ "

\n",
+ "
{html.escape(caption)}
\n",
+ "
\n",
" \"\"\"\n",
"\n",
"html_out = \"\"\n",
@@ -744,7 +744,7 @@
" # Append to html output.\n",
" for example, response in zip(examples, responses):\n",
" outputs.append((example[\"image\"], response))\n",
- " if num_examples and len(outputs) \u003e= num_examples:\n",
+ " if num_examples and len(outputs) >= num_examples:\n",
" return outputs"
]
},
@@ -852,34 +852,12 @@
],
"metadata": {
"colab": {
- "gpuType": "T4",
- "last_runtime": {
- "build_target": "//learning/grp/tools/ml_python:ml_notebook",
- "kind": "private"
- },
- "private_outputs": true,
- "provenance": [
- {
- "file_id": "17AiK8gRY7oiquQGkBH0d08PFQo3Kyx1I",
- "timestamp": 1715287187925
- },
- {
- "file_id": "1qZlJfPyfKRrNcz2shxQ93HnnE5Ge1LLn",
- "timestamp": 1715019972450
- },
- {
- "file_id": "1JFnlD2kSiTNexdPw_NYRtuW6uuSTI0kD",
- "timestamp": 1714585741026
- }
- ],
+ "name": "fine-tuning-paligemma.ipynb",
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
- },
- "language_info": {
- "name": "python"
}
},
"nbformat": 4,