From 8d0f63236fee9caf8b4f12ce926d655c0c8b8600 Mon Sep 17 00:00:00 2001 From: LG-AI-EXAONE Date: Fri, 11 Jul 2025 17:51:52 +0900 Subject: [PATCH 01/11] Add EXAONE 4.0 model architecture --- convert_hf_to_gguf.py | 74 +++++++++++++ convert_hf_to_gguf_update.py | 1 + gguf-py/gguf/constants.py | 19 ++++ gguf-py/gguf/tensor_mapping.py | 28 ++--- include/llama.h | 23 ++-- src/llama-arch.cpp | 21 ++++ src/llama-arch.h | 1 + src/llama-chat.cpp | 20 ++++ src/llama-chat.h | 1 + src/llama-model.cpp | 196 +++++++++++++++++++++++++++++++++ src/llama-model.h | 1 + src/llama-vocab.cpp | 9 ++ 12 files changed, 369 insertions(+), 25 deletions(-) diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 3d5e7e5a45600..ab4755e0f478f 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -761,6 +761,9 @@ def get_vocab_base_pre(self, tokenizer) -> str: if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae": # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct res = "exaone" + if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb": + # ref: temporary model + res = "exaone4" if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085": # ref: https://huggingface.co/microsoft/phi-2 res = "phi-2" @@ -6388,6 +6391,77 @@ def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32)) +@ModelBase.register("Exaone4ForCausalLM") +class Exaone4Model(TextModel): + model_arch = gguf.MODEL_ARCH.EXAONE4 + + def set_vocab(self): + tokens, toktypes, tokpre = self.get_vocab_base() + self.gguf_writer.add_tokenizer_model("gpt2") + self.gguf_writer.add_tokenizer_pre(tokpre) + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_types(toktypes) + + special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True) + special_vocab.chat_template = "exaone4" + special_vocab.add_to_gguf(self.gguf_writer) + + def set_gguf_parameters(self): + super().set_gguf_parameters() + hparams = self.hparams + self.gguf_writer.add_vocab_size(hparams["vocab_size"]) + + self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072)) + self.gguf_writer.add_embedding_length(hparams["hidden_size"]) + self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 4 * hparams["hidden_size"])) + self.gguf_writer.add_block_count(hparams["num_hidden_layers"]) + self.gguf_writer.add_head_count(hparams["num_attention_heads"]) + self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", hparams["num_attention_heads"])) + self.gguf_writer.add_layer_norm_rms_eps(hparams.get("layer_norm_epsilon", 1e-5)) + self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) + self.gguf_writer.add_key_length(hparams["head_dim"]) + self.gguf_writer.add_value_length(hparams["head_dim"]) + self.gguf_writer.add_file_type(self.ftype) + + if hparams.get("sliding_window") is not None: + self.gguf_writer.add_sliding_window(hparams["sliding_window"]) + # sliding window pattern 어떻게? + + rope_scaling = self.hparams.get("rope_scaling") or {} + if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling: + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) + self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) + + def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: + if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): + if rope_scaling.get("rope_type", '').lower() == "llama3": + base = self.hparams.get("rope_theta", 1_000_000.0) + if (dim := self.hparams.get("head_dim")) is None: + dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] + freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) + + factor = rope_scaling.get("factor", 16.0) + low_freq_factor = rope_scaling.get("low_freq_factor", 1.0) + high_freq_factor = rope_scaling.get("high_freq_factor", 4.0) + old_context_len = self.hparams.get("original_max_position_embeddings", 8192) + + low_freq_wavelen = old_context_len / low_freq_factor + high_freq_wavelen = old_context_len / high_freq_factor + + rope_factors = [] + for freq in freqs: + wavelen = 2 * math.pi / freq + if wavelen < high_freq_wavelen: + rope_factors.append(1) + elif wavelen > low_freq_wavelen: + rope_factors.append(factor) + else: + smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor) + rope_factors.append(1 / ((1 - smooth) / factor + smooth)) + + yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32)) + + @ModelBase.register("GraniteForCausalLM") class GraniteModel(LlamaModel): """Conversion for IBM's GraniteForCausalLM""" diff --git a/convert_hf_to_gguf_update.py b/convert_hf_to_gguf_update.py index 9f9b88da8785a..175a94b9168d9 100755 --- a/convert_hf_to_gguf_update.py +++ b/convert_hf_to_gguf_update.py @@ -114,6 +114,7 @@ class TOKENIZER_TYPE(IntEnum): {'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", }, {'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", }, {"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", }, + {"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "temporary model", }, {"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", }, {"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", }, {"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"}, diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 37df17fa1cdd0..3fdd6a8e92389 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -350,6 +350,7 @@ class MODEL_ARCH(IntEnum): JAIS = auto() NEMOTRON = auto() EXAONE = auto() + EXAONE4 = auto() GRANITE = auto() GRANITE_MOE = auto() GRANITE_HYBRID = auto() @@ -660,6 +661,7 @@ class MODEL_TENSOR(IntEnum): MODEL_ARCH.JAIS: "jais", MODEL_ARCH.NEMOTRON: "nemotron", MODEL_ARCH.EXAONE: "exaone", + MODEL_ARCH.EXAONE4: "exaone4", MODEL_ARCH.GRANITE: "granite", MODEL_ARCH.GRANITE_MOE: "granitemoe", MODEL_ARCH.GRANITE_HYBRID: "granitehybrid", @@ -2113,6 +2115,23 @@ class MODEL_TENSOR(IntEnum): MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.EXAONE4: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_Q_NORM, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_K_NORM, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.ATTN_POST_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.FFN_POST_NORM, + ], MODEL_ARCH.GRANITE: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 7a4f275ceec28..7f6e3bdb32f0f 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -13,7 +13,7 @@ class TensorNameMap: "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone "transformer.word_embeddings", # falcon "word_embeddings", # bloom - "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 granite-hybrid + "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 granite-hybrid exaone4 "tok_embeddings", # llama-pth "embeddings.word_embeddings", # bert nomic-bert "language_model.embedding.word_embeddings", # persimmon @@ -62,7 +62,7 @@ class TensorNameMap: # Output MODEL_TENSOR.OUTPUT: ( "embed_out", # gptneox - "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe + "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone exaone4 olmoe olmo2 phimoe "output", # llama-pth bloom internlm2 "word_embeddings_for_head", # persimmon "lm_head.linear", # phi2 @@ -76,7 +76,7 @@ class TensorNameMap: MODEL_TENSOR.OUTPUT_NORM: ( "gpt_neox.final_layer_norm", # gptneox "transformer.ln_f", # gpt2 gpt-j falcon jais exaone - "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe + "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe exaone4 "norm", # llama-pth "transformer.norm_f", # mpt dbrx "ln_f", # refact bloom qwen gpt2 @@ -168,7 +168,7 @@ class TensorNameMap: # Attention query MODEL_TENSOR.ATTN_Q: ( - "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe + "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe exaone4 "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom "layers.{bid}.attention.wq", # llama-pth "encoder.layer.{bid}.attention.self.query", # bert @@ -183,7 +183,7 @@ class TensorNameMap: # Attention key MODEL_TENSOR.ATTN_K: ( - "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe + "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe exaone4 "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom "layers.{bid}.attention.wk", # llama-pth "encoder.layer.{bid}.attention.self.key", # bert @@ -199,7 +199,7 @@ class TensorNameMap: # Attention value MODEL_TENSOR.ATTN_V: ( - "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe + "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe exaone4 "layers.{bid}.attention.wv", # llama-pth "encoder.layer.{bid}.attention.self.value", # bert "transformer.layer.{bid}.attention.v_lin", # distillbert @@ -219,7 +219,7 @@ class TensorNameMap: "transformer.blocks.{bid}.attn.out_proj", # mpt "transformer.h.{bid}.self_attention.dense", # falcon "h.{bid}.self_attention.dense", # bloom - "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe + "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe exaone4 "model.layers.{bid}.self_attn.linear_attn", # deci "layers.{bid}.attention.wo", # llama-pth "encoder.layer.{bid}.attention.output.dense", # bert @@ -252,7 +252,7 @@ class TensorNameMap: ), MODEL_TENSOR.ATTN_POST_NORM: ( - "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge + "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 exaone4 # ge "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414 ), @@ -293,7 +293,7 @@ class TensorNameMap: # Post feed-forward norm MODEL_TENSOR.FFN_POST_NORM: ( - "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2 + "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2 exaone4 "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414 "model.layers.{bid}.feed_forward.up_proj", ), @@ -325,7 +325,7 @@ class TensorNameMap: "transformer.blocks.{bid}.ffn.up_proj", # mpt "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon "h.{bid}.mlp.dense_h_to_4h", # bloom - "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2 + "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2 exaone4 "layers.{bid}.feed_forward.w3", # llama-pth "encoder.layer.{bid}.intermediate.dense", # bert "transformer.layer.{bid}.ffn.lin1", # distillbert @@ -378,7 +378,7 @@ class TensorNameMap: # Feed-forward gate MODEL_TENSOR.FFN_GATE: ( - "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2 + "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2 exaone4 "layers.{bid}.feed_forward.w1", # llama-pth "transformer.h.{bid}.mlp.w2", # qwen "transformer.h.{bid}.mlp.c_fc2", # jais @@ -415,7 +415,7 @@ class TensorNameMap: "transformer.blocks.{bid}.ffn.down_proj", # mpt "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon "h.{bid}.mlp.dense_4h_to_h", # bloom - "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2 + "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2 exaone4 "layers.{bid}.feed_forward.w2", # llama-pth "encoder.layer.{bid}.output.dense", # bert "transformer.layer.{bid}.ffn.lin2", # distillbert @@ -462,7 +462,7 @@ class TensorNameMap: "language_model.encoder.layers.{bid}.self_attention.q_layernorm", "model.layers.{bid}.self_attn.q_layernorm", # persimmon "model.layers.{bid}.self_attn.query_layernorm", # hunyuan - "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2 + "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2 exaone4 "transformer.blocks.{bid}.attn.q_ln", # sea-lion "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2 "transformer.layers.{bid}.attn.q_norm", # openelm @@ -472,7 +472,7 @@ class TensorNameMap: "language_model.encoder.layers.{bid}.self_attention.k_layernorm", "model.layers.{bid}.self_attn.k_layernorm", # persimmon "model.layers.{bid}.self_attn.key_layernorm", # hunyuan - "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2 + "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2 exaone4 "transformer.blocks.{bid}.attn.k_ln", # sea-lion "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2 "transformer.layers.{bid}.attn.k_norm", # openelm diff --git a/include/llama.h b/include/llama.h index dc86aea41dcbd..b32576e368460 100644 --- a/include/llama.h +++ b/include/llama.h @@ -107,17 +107,18 @@ extern "C" { LLAMA_VOCAB_PRE_TYPE_BLOOM = 23, LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24, LLAMA_VOCAB_PRE_TYPE_EXAONE = 25, - LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26, - LLAMA_VOCAB_PRE_TYPE_MINERVA = 27, - LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28, - LLAMA_VOCAB_PRE_TYPE_GPT4O = 29, - LLAMA_VOCAB_PRE_TYPE_SUPERBPE = 30, - LLAMA_VOCAB_PRE_TYPE_TRILLION = 31, - LLAMA_VOCAB_PRE_TYPE_BAILINGMOE = 32, - LLAMA_VOCAB_PRE_TYPE_LLAMA4 = 33, - LLAMA_VOCAB_PRE_TYPE_PIXTRAL = 34, - LLAMA_VOCAB_PRE_TYPE_SEED_CODER = 35, - LLAMA_VOCAB_PRE_TYPE_HUNYUAN = 36, + LLAMA_VOCAB_PRE_TYPE_EXAONE4 = 26, + LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 27, + LLAMA_VOCAB_PRE_TYPE_MINERVA = 28, + LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 29, + LLAMA_VOCAB_PRE_TYPE_GPT4O = 30, + LLAMA_VOCAB_PRE_TYPE_SUPERBPE = 31, + LLAMA_VOCAB_PRE_TYPE_TRILLION = 32, + LLAMA_VOCAB_PRE_TYPE_BAILINGMOE = 33, + LLAMA_VOCAB_PRE_TYPE_LLAMA4 = 34, + LLAMA_VOCAB_PRE_TYPE_PIXTRAL = 35, + LLAMA_VOCAB_PRE_TYPE_SEED_CODER = 36, + LLAMA_VOCAB_PRE_TYPE_HUNYUAN = 37, }; enum llama_rope_type { diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp index 1105139fcdbb8..ac67e8b5ce230 100644 --- a/src/llama-arch.cpp +++ b/src/llama-arch.cpp @@ -67,6 +67,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_JAIS, "jais" }, { LLM_ARCH_NEMOTRON, "nemotron" }, { LLM_ARCH_EXAONE, "exaone" }, + { LLM_ARCH_EXAONE4, "exaone4" }, { LLM_ARCH_RWKV6, "rwkv6" }, { LLM_ARCH_RWKV6QWEN2, "rwkv6qwen2" }, { LLM_ARCH_RWKV7, "rwkv7" }, @@ -1474,6 +1475,26 @@ static const std::map> LLM_TENSOR_N { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_EXAONE4, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" }, + } + }, { LLM_ARCH_RWKV6, { diff --git a/src/llama-arch.h b/src/llama-arch.h index a9dd188a8f27d..8d6e6d5c78213 100644 --- a/src/llama-arch.h +++ b/src/llama-arch.h @@ -71,6 +71,7 @@ enum llm_arch { LLM_ARCH_JAIS, LLM_ARCH_NEMOTRON, LLM_ARCH_EXAONE, + LLM_ARCH_EXAONE4, LLM_ARCH_RWKV6, LLM_ARCH_RWKV6QWEN2, LLM_ARCH_RWKV7, diff --git a/src/llama-chat.cpp b/src/llama-chat.cpp index cbc19d3c40c30..0302310701a4d 100644 --- a/src/llama-chat.cpp +++ b/src/llama-chat.cpp @@ -56,6 +56,7 @@ static const std::map LLM_CHAT_TEMPLATES = { { "glmedge", LLM_CHAT_TEMPLATE_GLMEDGE }, { "minicpm", LLM_CHAT_TEMPLATE_MINICPM }, { "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 }, + { "exaone4", LLM_CHAT_TEMPLATE_EXAONE_4 }, { "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD }, { "granite", LLM_CHAT_TEMPLATE_GRANITE }, { "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT }, @@ -167,6 +168,9 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) { } else if (tmpl_contains(LU8("<|Assistant|>")) && tmpl_contains(LU8("<|User|>")) && tmpl_contains(LU8("<|end▁of▁sentence|>"))) { return LLM_CHAT_TEMPLATE_DEEPSEEK_3; } else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) { + if (tmpl_contains("[|tool|]")) { + return LLM_CHAT_TEMPLATE_EXAONE_4; + } // ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb // EXAONE-3.0-7.8B-Instruct return LLM_CHAT_TEMPLATE_EXAONE_3; @@ -529,6 +533,22 @@ int32_t llm_chat_apply_template( if (add_ass) { ss << "[|assistant|]"; } + } else if (tmpl == LLM_CHAT_TEMPLATE_EXAONE_4) { + for (auto message : chat) { + std::string role(message->role); + if (role == "system") { + ss << "[|system|]" << trim(message->content) << "[|endofturn|]\n"; + } else if (role == "user") { + ss << "[|user|]" << trim(message->content) << "\n"; + } else if (role == "assistant") { + ss << "[|assistant|]" << trim(message->content) << "[|endofturn|]\n"; + } else if (role == "assistant_tool_call") { + ss << "[|tool|]" << trim(message->content) << "[|endofturn|]\n"; + } + } + if (add_ass) { + ss << "[|assistant|]"; + } } else if (tmpl == LLM_CHAT_TEMPLATE_RWKV_WORLD) { // this template requires the model to have "\n\n" as EOT token for (size_t i = 0; i < chat.size(); i++) { diff --git a/src/llama-chat.h b/src/llama-chat.h index b621fda281669..96281889a9a62 100644 --- a/src/llama-chat.h +++ b/src/llama-chat.h @@ -35,6 +35,7 @@ enum llm_chat_template { LLM_CHAT_TEMPLATE_GLMEDGE, LLM_CHAT_TEMPLATE_MINICPM, LLM_CHAT_TEMPLATE_EXAONE_3, + LLM_CHAT_TEMPLATE_EXAONE_4, LLM_CHAT_TEMPLATE_RWKV_WORLD, LLM_CHAT_TEMPLATE_GRANITE, LLM_CHAT_TEMPLATE_GIGACHAT, diff --git a/src/llama-model.cpp b/src/llama-model.cpp index 8fc025afa0005..a0cf41021c351 100644 --- a/src/llama-model.cpp +++ b/src/llama-model.cpp @@ -52,6 +52,7 @@ const char * llm_type_name(llm_type type) { case LLM_TYPE_0_5B: return "0.5B"; case LLM_TYPE_0_6B: return "0.6B"; case LLM_TYPE_1B: return "1B"; + case LLM_TYPE_1_2B: return "1.2B"; case LLM_TYPE_1_3B: return "1.3B"; case LLM_TYPE_1_4B: return "1.4B"; case LLM_TYPE_1_5B: return "1.5B"; @@ -1443,6 +1444,23 @@ void llama_model::load_hparams(llama_model_loader & ml) { default: type = LLM_TYPE_UNKNOWN; } } break; + case LLM_ARCH_EXAONE4: + { + if (hparams.n_layer == 64) { // 32B + hparams.swa_type = LLAMA_SWA_TYPE_STANDARD; + hparams.n_swa = 4096; + hparams.set_swa_pattern(4); + } + + ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false); + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 30: type = LLM_TYPE_1_2B; break; + case 64: type = LLM_TYPE_32B; break; + default: type = LLM_TYPE_UNKNOWN; + } + } break; case LLM_ARCH_RWKV6: case LLM_ARCH_RWKV6QWEN2: { @@ -4215,6 +4233,39 @@ bool llama_model::load_tensors(llama_model_loader & ml) { layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; + case LLM_ARCH_EXAONE4: + { + tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + + // output + output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); + + // if output is NULL, init from the input tok embed + if (output == NULL) { + output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); + } + + for (int i = 0; i < n_layer; ++i) { + auto & layer = layers[i]; + + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); + + layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); + + layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0); + layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); + layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); + + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0); + } + } break; case LLM_ARCH_RWKV6: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); @@ -13182,6 +13233,142 @@ struct llm_build_exaone : public llm_graph_context { } }; +template +struct llm_build_exaone4 : public llm_graph_context { + llm_build_exaone4(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + const int64_t n_embd_head = hparams.n_embd_head_k; + + GGML_ASSERT(n_embd_head == hparams.n_embd_head_v); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + ggml_tensor * cur; + ggml_tensor * inpL; + + inpL = build_inp_embd(model.tok_embd); + + // inp_pos - contains the positions + ggml_tensor * inp_pos = build_inp_pos(); + + using inp_attn_type = std::conditional_t; + inp_attn_type * inp_attn = nullptr; + + if constexpr (iswa) { + inp_attn = build_attn_inp_kv_unified_iswa(); + } else { + inp_attn = build_attn_inp_kv_unified(); + } + + ggml_tensor * inp_out_ids = build_inp_out_ids(); + + for (int il = 0; il < n_layer; ++il) { + ggml_tensor * inpSA = inpL; + + // use RoPE for SWA layers or non-SWA models + const bool use_rope = hparams.is_swa(il) || hparams.swa_type == LLAMA_SWA_TYPE_NONE; + + cur = inpL; + + // self-attention + { + ggml_tensor * rope_factors = model.get_rope_factors(cparams, il); + + ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + + ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + + ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); + Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); + + Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il); + Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il); + cb(Qcur, "Qcur_normed", il); + cb(Kcur, "Kcur_normed", il); + + if (use_rope) { + Qcur = ggml_rope_ext( + ctx0, Qcur, inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + + Kcur = ggml_rope_ext( + ctx0, Kcur, inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + } + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + cur = build_attn(inp_attn, gf, + model.layers[il].wo, NULL, + Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); + cb(cur, "attn_out", il); + } + + if (il == n_layer - 1 && inp_out_ids) { + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + cur = build_norm(cur, + model.layers[il].attn_post_norm, NULL, + LLM_NORM_RMS, il); + cb(cur, "attn_post_norm", il); + + ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + cur = build_ffn(ffn_inp, + model.layers[il].ffn_up, NULL, NULL, + model.layers[il].ffn_gate, NULL, NULL, + model.layers[il].ffn_down, NULL, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, il); + cb(cur, "ffn_out", il); + + cur = build_norm(cur, + model.layers[il].ffn_post_norm, NULL, + LLM_NORM_RMS, -1); + cb(cur, "ffn_post_norm", -1); + + cur = ggml_add(ctx0, cur, ffn_inp); + + cur = build_cvec(cur, il); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = build_norm(cur, + model.output_norm, NULL, + LLM_NORM_RMS, -1); + + cb(cur, "result_norm", -1); + res->t_embd = cur; + + // lm_head + cur = build_lora_mm(model.output, cur); + + cb(cur, "result_output", -1); + res->t_logits = cur; + + ggml_build_forward_expand(gf, cur); + } +}; + struct llm_build_rwkv6_base : public llm_graph_context { const llama_model & model; @@ -16195,6 +16382,14 @@ llm_graph_result_ptr llama_model::build_graph( { llm = std::make_unique(*this, params, gf); } break; + case LLM_ARCH_EXAONE4: + { + if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) { + llm = std::make_unique>(*this, params, gf); + } else { + llm = std::make_unique>(*this, params, gf); + } + } break; case LLM_ARCH_RWKV6: { llm = std::make_unique(*this, params, gf); @@ -16451,6 +16646,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) { case LLM_ARCH_ORION: case LLM_ARCH_NEMOTRON: case LLM_ARCH_EXAONE: + case LLM_ARCH_EXAONE4: case LLM_ARCH_MINICPM3: case LLM_ARCH_DOTS1: case LLM_ARCH_HUNYUAN_MOE: diff --git a/src/llama-model.h b/src/llama-model.h index 431efbd516783..cbc439fe33515 100644 --- a/src/llama-model.h +++ b/src/llama-model.h @@ -44,6 +44,7 @@ enum llm_type { LLM_TYPE_0_5B, LLM_TYPE_0_6B, LLM_TYPE_1B, + LLM_TYPE_1_2B, LLM_TYPE_1_3B, LLM_TYPE_1_4B, LLM_TYPE_1_5B, diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 02cdc244adbef..8770d42319eaa 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -340,6 +340,12 @@ struct llm_tokenizer_bpe : llm_tokenizer { "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", }; break; + case LLAMA_VOCAB_PRE_TYPE_EXAONE4: + regex_exprs = { + "\\p{N}", + "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)|\\s+", + }; + break; case LLAMA_VOCAB_PRE_TYPE_GPT2: case LLAMA_VOCAB_PRE_TYPE_MPT: case LLAMA_VOCAB_PRE_TYPE_OLMO: @@ -1628,6 +1634,9 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { } else if ( tokenizer_pre == "exaone") { pre_type = LLAMA_VOCAB_PRE_TYPE_EXAONE; + } else if ( + tokenizer_pre == "exaone4") { + pre_type = LLAMA_VOCAB_PRE_TYPE_EXAONE4; } else if ( tokenizer_pre == "chameleon") { pre_type = LLAMA_VOCAB_PRE_TYPE_CHAMELEON; From e625aea2fe9befb5b03cd1f222f7bc55e3d65bb1 Mon Sep 17 00:00:00 2001 From: LG-AI-EXAONE Date: Sat, 12 Jul 2025 01:16:56 +0900 Subject: [PATCH 02/11] Apply PR feedback --- convert_hf_to_gguf.py | 20 +++++++++++++++----- convert_hf_to_gguf_update.py | 2 +- gguf-py/gguf/tensor_mapping.py | 26 +++++++++++++------------- 3 files changed, 29 insertions(+), 19 deletions(-) diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index ab4755e0f478f..203226df762a9 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -761,9 +761,6 @@ def get_vocab_base_pre(self, tokenizer) -> str: if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae": # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct res = "exaone" - if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb": - # ref: temporary model - res = "exaone4" if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085": # ref: https://huggingface.co/microsoft/phi-2 res = "phi-2" @@ -839,6 +836,9 @@ def get_vocab_base_pre(self, tokenizer) -> str: if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4": # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct res = "midm-2.0" + if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb": + # ref: temporary model + res = "exaone4" if res is None: logger.warning("\n") @@ -6403,7 +6403,6 @@ def set_vocab(self): self.gguf_writer.add_token_types(toktypes) special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True) - special_vocab.chat_template = "exaone4" special_vocab.add_to_gguf(self.gguf_writer) def set_gguf_parameters(self): @@ -6425,7 +6424,18 @@ def set_gguf_parameters(self): if hparams.get("sliding_window") is not None: self.gguf_writer.add_sliding_window(hparams["sliding_window"]) - # sliding window pattern 어떻게? + if "layer_types" in hparams: + self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]]) + elif "sliding_window_pattern" in hparams: + sliding_window_pattern = [] + if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG + for i in range(hparams["num_hidden_layers"]): + sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L") + if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4 + for i in range(hparams["num_hidden_layers"]): + sliding_window_pattern.append((i+1) % hparams["sliding_window_pattern"] != 0) + if len(sliding_window_pattern) == hparams["num_hidden_layers"]: + self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern) rope_scaling = self.hparams.get("rope_scaling") or {} if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling: diff --git a/convert_hf_to_gguf_update.py b/convert_hf_to_gguf_update.py index 175a94b9168d9..b7e240d87e875 100755 --- a/convert_hf_to_gguf_update.py +++ b/convert_hf_to_gguf_update.py @@ -114,7 +114,6 @@ class TOKENIZER_TYPE(IntEnum): {'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", }, {'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", }, {"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", }, - {"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "temporary model", }, {"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", }, {"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", }, {"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"}, @@ -131,6 +130,7 @@ class TOKENIZER_TYPE(IntEnum): {"name": "seed-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base", }, {"name": "a.x-4.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/skt/A.X-4.0", }, {"name": "midm-2.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct", }, + {"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "temporary model", }, ] # some models are known to be broken upstream, so we will skip them as exceptions diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 7f6e3bdb32f0f..00be4cc6e221f 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -13,7 +13,7 @@ class TensorNameMap: "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone "transformer.word_embeddings", # falcon "word_embeddings", # bloom - "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 granite-hybrid exaone4 + "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 granite-hybrid "tok_embeddings", # llama-pth "embeddings.word_embeddings", # bert nomic-bert "language_model.embedding.word_embeddings", # persimmon @@ -62,7 +62,7 @@ class TensorNameMap: # Output MODEL_TENSOR.OUTPUT: ( "embed_out", # gptneox - "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone exaone4 olmoe olmo2 phimoe + "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe "output", # llama-pth bloom internlm2 "word_embeddings_for_head", # persimmon "lm_head.linear", # phi2 @@ -76,7 +76,7 @@ class TensorNameMap: MODEL_TENSOR.OUTPUT_NORM: ( "gpt_neox.final_layer_norm", # gptneox "transformer.ln_f", # gpt2 gpt-j falcon jais exaone - "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe exaone4 + "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe "norm", # llama-pth "transformer.norm_f", # mpt dbrx "ln_f", # refact bloom qwen gpt2 @@ -168,7 +168,7 @@ class TensorNameMap: # Attention query MODEL_TENSOR.ATTN_Q: ( - "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe exaone4 + "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom "layers.{bid}.attention.wq", # llama-pth "encoder.layer.{bid}.attention.self.query", # bert @@ -183,7 +183,7 @@ class TensorNameMap: # Attention key MODEL_TENSOR.ATTN_K: ( - "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe exaone4 + "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom "layers.{bid}.attention.wk", # llama-pth "encoder.layer.{bid}.attention.self.key", # bert @@ -199,7 +199,7 @@ class TensorNameMap: # Attention value MODEL_TENSOR.ATTN_V: ( - "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe exaone4 + "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe "layers.{bid}.attention.wv", # llama-pth "encoder.layer.{bid}.attention.self.value", # bert "transformer.layer.{bid}.attention.v_lin", # distillbert @@ -219,7 +219,7 @@ class TensorNameMap: "transformer.blocks.{bid}.attn.out_proj", # mpt "transformer.h.{bid}.self_attention.dense", # falcon "h.{bid}.self_attention.dense", # bloom - "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe exaone4 + "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe "model.layers.{bid}.self_attn.linear_attn", # deci "layers.{bid}.attention.wo", # llama-pth "encoder.layer.{bid}.attention.output.dense", # bert @@ -252,7 +252,7 @@ class TensorNameMap: ), MODEL_TENSOR.ATTN_POST_NORM: ( - "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 exaone4 # ge + "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414 ), @@ -293,7 +293,7 @@ class TensorNameMap: # Post feed-forward norm MODEL_TENSOR.FFN_POST_NORM: ( - "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2 exaone4 + "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2 "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414 "model.layers.{bid}.feed_forward.up_proj", ), @@ -325,7 +325,7 @@ class TensorNameMap: "transformer.blocks.{bid}.ffn.up_proj", # mpt "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon "h.{bid}.mlp.dense_h_to_4h", # bloom - "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2 exaone4 + "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2 "layers.{bid}.feed_forward.w3", # llama-pth "encoder.layer.{bid}.intermediate.dense", # bert "transformer.layer.{bid}.ffn.lin1", # distillbert @@ -415,7 +415,7 @@ class TensorNameMap: "transformer.blocks.{bid}.ffn.down_proj", # mpt "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon "h.{bid}.mlp.dense_4h_to_h", # bloom - "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2 exaone4 + "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2 "layers.{bid}.feed_forward.w2", # llama-pth "encoder.layer.{bid}.output.dense", # bert "transformer.layer.{bid}.ffn.lin2", # distillbert @@ -462,7 +462,7 @@ class TensorNameMap: "language_model.encoder.layers.{bid}.self_attention.q_layernorm", "model.layers.{bid}.self_attn.q_layernorm", # persimmon "model.layers.{bid}.self_attn.query_layernorm", # hunyuan - "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2 exaone4 + "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2 "transformer.blocks.{bid}.attn.q_ln", # sea-lion "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2 "transformer.layers.{bid}.attn.q_norm", # openelm @@ -472,7 +472,7 @@ class TensorNameMap: "language_model.encoder.layers.{bid}.self_attention.k_layernorm", "model.layers.{bid}.self_attn.k_layernorm", # persimmon "model.layers.{bid}.self_attn.key_layernorm", # hunyuan - "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2 exaone4 + "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2 "transformer.blocks.{bid}.attn.k_ln", # sea-lion "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2 "transformer.layers.{bid}.attn.k_norm", # openelm From bd734e824aee1da0fd16c0b5eb817052ab0057ef Mon Sep 17 00:00:00 2001 From: LG-AI-EXAONE Date: Sat, 12 Jul 2025 01:41:25 +0900 Subject: [PATCH 03/11] Fix typo --- gguf-py/gguf/tensor_mapping.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 00be4cc6e221f..7a4f275ceec28 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -378,7 +378,7 @@ class TensorNameMap: # Feed-forward gate MODEL_TENSOR.FFN_GATE: ( - "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2 exaone4 + "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2 "layers.{bid}.feed_forward.w1", # llama-pth "transformer.h.{bid}.mlp.w2", # qwen "transformer.h.{bid}.mlp.c_fc2", # jais From 5b69c4f38b0e496b5278a46df15c03bbee891163 Mon Sep 17 00:00:00 2001 From: LG-AI-EXAONE Date: Sat, 12 Jul 2025 19:06:31 +0900 Subject: [PATCH 04/11] Add missing enum: EXAONE4 --- src/llama-vocab.h | 1 + 1 file changed, 1 insertion(+) diff --git a/src/llama-vocab.h b/src/llama-vocab.h index 46a1ccecb51fc..c0de664baeda9 100644 --- a/src/llama-vocab.h +++ b/src/llama-vocab.h @@ -45,6 +45,7 @@ enum llama_vocab_pre_type { LLAMA_VOCAB_PRE_TYPE_PIXTRAL = 34, LLAMA_VOCAB_PRE_TYPE_SEED_CODER = 35, LLAMA_VOCAB_PRE_TYPE_HUNYUAN = 36, + LLAMA_VOCAB_PRE_TYPE_EXAONE4 = 37, }; struct LLM_KV; From 28e6531a3474d5d8d9e63f88a4c854064d4af31b Mon Sep 17 00:00:00 2001 From: LG-AI-EXAONE Date: Sat, 12 Jul 2025 23:46:36 +0900 Subject: [PATCH 05/11] Apply PR feedback --- convert_hf_to_gguf.py | 10 +++++----- src/llama-model.cpp | 8 ++++---- 2 files changed, 9 insertions(+), 9 deletions(-) diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index e4566e7270785..bbc7a8763456c 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -6413,7 +6413,7 @@ def set_gguf_parameters(self): super().set_gguf_parameters() hparams = self.hparams self.gguf_writer.add_vocab_size(hparams["vocab_size"]) - + self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072)) self.gguf_writer.add_embedding_length(hparams["hidden_size"]) self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 4 * hparams["hidden_size"])) @@ -6421,7 +6421,7 @@ def set_gguf_parameters(self): self.gguf_writer.add_head_count(hparams["num_attention_heads"]) self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", hparams["num_attention_heads"])) self.gguf_writer.add_layer_norm_rms_eps(hparams.get("layer_norm_epsilon", 1e-5)) - self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) + self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10_000.0)) self.gguf_writer.add_key_length(hparams["head_dim"]) self.gguf_writer.add_value_length(hparams["head_dim"]) self.gguf_writer.add_file_type(self.ftype) @@ -6437,10 +6437,10 @@ def set_gguf_parameters(self): sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L") if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4 for i in range(hparams["num_hidden_layers"]): - sliding_window_pattern.append((i+1) % hparams["sliding_window_pattern"] != 0) + sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0) if len(sliding_window_pattern) == hparams["num_hidden_layers"]: self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern) - + rope_scaling = self.hparams.get("rope_scaling") or {} if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling: self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) @@ -6449,7 +6449,7 @@ def set_gguf_parameters(self): def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): if rope_scaling.get("rope_type", '').lower() == "llama3": - base = self.hparams.get("rope_theta", 1_000_000.0) + base = self.hparams.get("rope_theta", 10_000.0) if (dim := self.hparams.get("head_dim")) is None: dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) diff --git a/src/llama-model.cpp b/src/llama-model.cpp index 4323ee32cf543..7b6c79e6937f5 100644 --- a/src/llama-model.cpp +++ b/src/llama-model.cpp @@ -1453,10 +1453,10 @@ void llama_model::load_hparams(llama_model_loader & ml) { hparams.n_swa = 4096; hparams.set_swa_pattern(4); } - + ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - + switch (hparams.n_layer) { case 30: type = LLM_TYPE_1_2B; break; case 64: type = LLM_TYPE_32B; break; @@ -4275,7 +4275,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) { layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); - + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); @@ -13308,7 +13308,7 @@ struct llm_build_exaone4 : public llm_graph_context { } ggml_tensor * inp_out_ids = build_inp_out_ids(); - + for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; From 3a7b5c8bd1e780a70b718f27b3b56fe19865d3f5 Mon Sep 17 00:00:00 2001 From: LG-AI-EXAONE Date: Tue, 15 Jul 2025 12:07:11 +0900 Subject: [PATCH 06/11] Update codes --- convert_hf_to_gguf.py | 39 +++--------------------------------- convert_hf_to_gguf_update.py | 2 +- 2 files changed, 4 insertions(+), 37 deletions(-) diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index bbc7a8763456c..f1708995e906e 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -804,45 +804,12 @@ def get_vocab_base_pre(self, tokenizer) -> str: if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec": # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base res = "seed-coder" - if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b": - # ref: https://huggingface.co/THUDM/glm-4-9b-chat - res = "chatglm-bpe" - if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516": - # ref: https://huggingface.co/THUDM/glm-4-9b-chat - res = "chatglm-bpe" - if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2": - # ref: https://huggingface.co/THUDM/glm-4-9b-hf - res = "glm4" + if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb": + # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B + res = "exaone4" if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35": # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0 res = "minerva-7b" - if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664": - # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct - res = "hunyuan" - if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf": - # ref: https://huggingface.co/skt/A.X-4.0 - res = "a.x-4.0" - if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6": - # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base - res = "falcon-h1" - if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86": - # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base - res = "falcon-h1" - if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896": - # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base - res = "falcon-h1" - if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b": - # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base - res = "falcon-h1" - if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4": - # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct - res = "midm-2.0" - if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51": - # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer - res = "lfm2" - if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb": - # ref: temporary model - res = "exaone4" if res is None: logger.warning("\n") diff --git a/convert_hf_to_gguf_update.py b/convert_hf_to_gguf_update.py index ab90bc274a312..6a71a1879167b 100755 --- a/convert_hf_to_gguf_update.py +++ b/convert_hf_to_gguf_update.py @@ -131,7 +131,7 @@ class TOKENIZER_TYPE(IntEnum): {"name": "a.x-4.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/skt/A.X-4.0", }, {"name": "midm-2.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct", }, {"name": "lfm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"}, - {"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "temporary model", }, + {"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", }, ] # some models are known to be broken upstream, so we will skip them as exceptions From 7ffdb3782eed7fd04e76396ae0e694e30e4ab084 Mon Sep 17 00:00:00 2001 From: LG-AI-EXAONE Date: Tue, 15 Jul 2025 12:50:02 +0900 Subject: [PATCH 07/11] Revert changes --- convert_hf_to_gguf.py | 39 ++++++++++++++++++++++++++++++++++++--- 1 file changed, 36 insertions(+), 3 deletions(-) diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index f1708995e906e..30eef39133848 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -804,12 +804,45 @@ def get_vocab_base_pre(self, tokenizer) -> str: if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec": # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base res = "seed-coder" - if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb": - # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B - res = "exaone4" + if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b": + # ref: https://huggingface.co/THUDM/glm-4-9b-chat + res = "chatglm-bpe" + if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516": + # ref: https://huggingface.co/THUDM/glm-4-9b-chat + res = "chatglm-bpe" + if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2": + # ref: https://huggingface.co/THUDM/glm-4-9b-hf + res = "glm4" if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35": # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0 res = "minerva-7b" + if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664": + # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct + res = "hunyuan" + if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf": + # ref: https://huggingface.co/skt/A.X-4.0 + res = "a.x-4.0" + if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6": + # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base + res = "falcon-h1" + if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86": + # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base + res = "falcon-h1" + if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896": + # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base + res = "falcon-h1" + if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b": + # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base + res = "falcon-h1" + if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4": + # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct + res = "midm-2.0" + if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51": + # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer + res = "lfm2" + if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb": + # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B + res = "exaone4" if res is None: logger.warning("\n") From 2e665381887255e9460eb38171ca7584b933e1cf Mon Sep 17 00:00:00 2001 From: LG-AI-EXAONE Date: Tue, 15 Jul 2025 14:27:42 +0900 Subject: [PATCH 08/11] Apply PR feedback --- convert_hf_to_gguf.py | 12 ------------ 1 file changed, 12 deletions(-) diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 30eef39133848..6dc2b5dd0b71d 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -6414,18 +6414,6 @@ def set_gguf_parameters(self): hparams = self.hparams self.gguf_writer.add_vocab_size(hparams["vocab_size"]) - self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072)) - self.gguf_writer.add_embedding_length(hparams["hidden_size"]) - self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 4 * hparams["hidden_size"])) - self.gguf_writer.add_block_count(hparams["num_hidden_layers"]) - self.gguf_writer.add_head_count(hparams["num_attention_heads"]) - self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", hparams["num_attention_heads"])) - self.gguf_writer.add_layer_norm_rms_eps(hparams.get("layer_norm_epsilon", 1e-5)) - self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10_000.0)) - self.gguf_writer.add_key_length(hparams["head_dim"]) - self.gguf_writer.add_value_length(hparams["head_dim"]) - self.gguf_writer.add_file_type(self.ftype) - if hparams.get("sliding_window") is not None: self.gguf_writer.add_sliding_window(hparams["sliding_window"]) if "layer_types" in hparams: From 33f1bb9f03255e0e5eb16a319c40678a0f5a5e63 Mon Sep 17 00:00:00 2001 From: LG-AI-EXAONE Date: Tue, 15 Jul 2025 15:05:16 +0900 Subject: [PATCH 09/11] Update src/llama-vocab.cpp --- src/llama-vocab.cpp | 5 ----- 1 file changed, 5 deletions(-) diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 2bb07acf3a16f..6f0ec98f80b88 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -341,11 +341,6 @@ struct llm_tokenizer_bpe : llm_tokenizer { }; break; case LLAMA_VOCAB_PRE_TYPE_EXAONE4: - regex_exprs = { - "\\p{N}", - "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)|\\s+", - }; - break; case LLAMA_VOCAB_PRE_TYPE_GPT2: case LLAMA_VOCAB_PRE_TYPE_MPT: case LLAMA_VOCAB_PRE_TYPE_OLMO: From f5d696796687b907428878a5116824f2ae23b5d2 Mon Sep 17 00:00:00 2001 From: LG-AI-EXAONE Date: Wed, 16 Jul 2025 15:30:41 +0900 Subject: [PATCH 10/11] Apply PR feedback --- src/llama-vocab.cpp | 3 +-- src/llama-vocab.h | 1 - 2 files changed, 1 insertion(+), 3 deletions(-) diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 6f0ec98f80b88..c9931ed84fd18 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -340,7 +340,6 @@ struct llm_tokenizer_bpe : llm_tokenizer { "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", }; break; - case LLAMA_VOCAB_PRE_TYPE_EXAONE4: case LLAMA_VOCAB_PRE_TYPE_GPT2: case LLAMA_VOCAB_PRE_TYPE_MPT: case LLAMA_VOCAB_PRE_TYPE_OLMO: @@ -1632,7 +1631,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { pre_type = LLAMA_VOCAB_PRE_TYPE_EXAONE; } else if ( tokenizer_pre == "exaone4") { - pre_type = LLAMA_VOCAB_PRE_TYPE_EXAONE4; + pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2; } else if ( tokenizer_pre == "chameleon") { pre_type = LLAMA_VOCAB_PRE_TYPE_CHAMELEON; diff --git a/src/llama-vocab.h b/src/llama-vocab.h index c0de664baeda9..46a1ccecb51fc 100644 --- a/src/llama-vocab.h +++ b/src/llama-vocab.h @@ -45,7 +45,6 @@ enum llama_vocab_pre_type { LLAMA_VOCAB_PRE_TYPE_PIXTRAL = 34, LLAMA_VOCAB_PRE_TYPE_SEED_CODER = 35, LLAMA_VOCAB_PRE_TYPE_HUNYUAN = 36, - LLAMA_VOCAB_PRE_TYPE_EXAONE4 = 37, }; struct LLM_KV; From 3520da9190981d1f78eafc5cea08ef9f62fc8161 Mon Sep 17 00:00:00 2001 From: lgai-exaone Date: Fri, 18 Jul 2025 17:34:48 +0900 Subject: [PATCH 11/11] Update src/llama-chat.cpp MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Sigbjørn Skjæret --- src/llama-chat.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/llama-chat.cpp b/src/llama-chat.cpp index 0302310701a4d..ec6dcd8a031a3 100644 --- a/src/llama-chat.cpp +++ b/src/llama-chat.cpp @@ -542,7 +542,7 @@ int32_t llm_chat_apply_template( ss << "[|user|]" << trim(message->content) << "\n"; } else if (role == "assistant") { ss << "[|assistant|]" << trim(message->content) << "[|endofturn|]\n"; - } else if (role == "assistant_tool_call") { + } else if (role == "tool") { ss << "[|tool|]" << trim(message->content) << "[|endofturn|]\n"; } }