Skip to content

Commit ad896fa

Browse files
committed
remove .rotary_pos_emb.inv_freq and unuse code for chatglm3 model
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
1 parent 8edec93 commit ad896fa

File tree

1 file changed

+8
-75
lines changed

1 file changed

+8
-75
lines changed

convert-hf-to-gguf.py

Lines changed: 8 additions & 75 deletions
Original file line numberDiff line numberDiff line change
@@ -2805,85 +2805,18 @@ def set_gguf_parameters(self):
28052805
self.gguf_writer.add_rope_dimension_count(64)
28062806
self.gguf_writer.add_add_bos_token(False)
28072807

2808-
def write_tensors(self):
2809-
block_count = self.hparams["num_layers"]
2810-
tensors = dict(self.get_tensors())
2811-
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
2812-
has_lm_head = True
2813-
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
2814-
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
2815-
2816-
for name, data_torch in tensors.items():
2817-
if name.endswith(".rotary_pos_emb.inv_freq"):
2818-
continue
2819-
2820-
if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
2821-
has_lm_head = False
2808+
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
2809+
if name.endswith(".rotary_pos_emb.inv_freq"):
2810+
return []
28222811

2823-
name = re.sub(r'transformer\.', '', name)
2812+
del bid # unused
28242813

2825-
old_dtype = data_torch.dtype
2814+
name = re.sub(r'transformer\.', '', name)
28262815

2827-
# convert any unsupported data types to float32
2828-
if data_torch.dtype not in (torch.float16, torch.float32):
2829-
data_torch = data_torch.to(torch.float32)
2816+
if name == "word_embeddings.weight":
2817+
assert self.tensor_names is not None
28302818

2831-
data = data_torch.squeeze().numpy()
2832-
2833-
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
2834-
# Map bloom-style qkv_linear to gpt-style qkv_linear
2835-
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
2836-
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
2837-
qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
2838-
data = np.concatenate(
2839-
(
2840-
qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
2841-
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
2842-
qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
2843-
),
2844-
axis=0,
2845-
)
2846-
print("re-format attention.linear_qkv.weight")
2847-
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
2848-
qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
2849-
data = np.concatenate(
2850-
(
2851-
qkv_bias[:, 0, :].reshape((n_embed,)),
2852-
qkv_bias[:, 1, :].reshape((n_embed,)),
2853-
qkv_bias[:, 2, :].reshape((n_embed,)),
2854-
),
2855-
axis=0,
2856-
)
2857-
print("re-format attention.linear_qkv.bias")
2858-
2859-
# map tensor names
2860-
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
2861-
if new_name is None:
2862-
print(f"Can not map tensor {name!r}")
2863-
sys.exit()
2864-
2865-
n_dims = len(data.shape)
2866-
data_dtype = data.dtype
2867-
2868-
# if f32 desired, convert any float16 to float32
2869-
if self.ftype == 0 and data_dtype == np.float16:
2870-
data = data.astype(np.float32)
2871-
2872-
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
2873-
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
2874-
data = data.astype(np.float32)
2875-
2876-
# if f16 desired, convert any float32 2-dim weight tensors to float16
2877-
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
2878-
data = data.astype(np.float16)
2879-
2880-
print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
2881-
2882-
self.gguf_writer.add_tensor(new_name, data)
2883-
2884-
if not has_lm_head and name == "word_embeddings.weight":
2885-
self.gguf_writer.add_tensor("output.weight", data)
2886-
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
2819+
return [(self.map_tensor_name(name), data_torch)]
28872820

28882821

28892822
###### CONVERSION LOGIC ######

0 commit comments

Comments
 (0)