@@ -2700,85 +2700,18 @@ def set_gguf_parameters(self):
2700
2700
self .gguf_writer .add_rope_dimension_count (64 )
2701
2701
self .gguf_writer .add_add_bos_token (False )
2702
2702
2703
- def write_tensors (self ):
2704
- block_count = self .hparams ["num_layers" ]
2705
- tensors = dict (self .get_tensors ())
2706
- tensor_map = gguf .get_tensor_name_map (self .model_arch , block_count )
2707
- has_lm_head = True
2708
- n_head = self .hparams .get ("n_head" , self .hparams .get ("num_attention_heads" ))
2709
- n_embed = self .hparams .get ("hidden_size" , self .hparams .get ("n_embed" ))
2710
-
2711
- for name , data_torch in tensors .items ():
2712
- if name .endswith (".rotary_pos_emb.inv_freq" ):
2713
- continue
2714
-
2715
- if "lm_head.weight" not in tensors .keys () and "output.weight" not in tensors .keys ():
2716
- has_lm_head = False
2703
+ def modify_tensors (self , data_torch : Tensor , name : str , bid : int | None ) -> Iterable [tuple [str , Tensor ]]:
2704
+ if name .endswith (".rotary_pos_emb.inv_freq" ):
2705
+ return []
2717
2706
2718
- name = re . sub ( r'transformer\.' , '' , name )
2707
+ del bid # unused
2719
2708
2720
- old_dtype = data_torch . dtype
2709
+ name = re . sub ( r'transformer\.' , '' , name )
2721
2710
2722
- # convert any unsupported data types to float32
2723
- if data_torch .dtype not in (torch .float16 , torch .float32 ):
2724
- data_torch = data_torch .to (torch .float32 )
2711
+ if name == "word_embeddings.weight" :
2712
+ assert self .tensor_names is not None
2725
2713
2726
- data = data_torch .squeeze ().numpy ()
2727
-
2728
- if re .match (r"h\.\d+\.self_attention\.query_key_value\.weight" , name ):
2729
- # Map bloom-style qkv_linear to gpt-style qkv_linear
2730
- # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
2731
- # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
2732
- qkv_weights = data .reshape ((n_head , 3 , n_embed // n_head , n_embed ))
2733
- data = np .concatenate (
2734
- (
2735
- qkv_weights [:, 0 , :, :].reshape ((- 1 , n_embed )),
2736
- qkv_weights [:, 1 , :, :].reshape ((- 1 , n_embed )),
2737
- qkv_weights [:, 2 , :, :].reshape ((- 1 , n_embed )),
2738
- ),
2739
- axis = 0 ,
2740
- )
2741
- print ("re-format attention.linear_qkv.weight" )
2742
- elif re .match (r"h\.\d+\.self_attention\.query_key_value\.bias" , name ):
2743
- qkv_bias = data .reshape ((n_head , 3 , n_embed // n_head ))
2744
- data = np .concatenate (
2745
- (
2746
- qkv_bias [:, 0 , :].reshape ((n_embed ,)),
2747
- qkv_bias [:, 1 , :].reshape ((n_embed ,)),
2748
- qkv_bias [:, 2 , :].reshape ((n_embed ,)),
2749
- ),
2750
- axis = 0 ,
2751
- )
2752
- print ("re-format attention.linear_qkv.bias" )
2753
-
2754
- # map tensor names
2755
- new_name = tensor_map .get_name (name , try_suffixes = (".weight" , ".bias" ))
2756
- if new_name is None :
2757
- print (f"Can not map tensor { name !r} " )
2758
- sys .exit ()
2759
-
2760
- n_dims = len (data .shape )
2761
- data_dtype = data .dtype
2762
-
2763
- # if f32 desired, convert any float16 to float32
2764
- if self .ftype == 0 and data_dtype == np .float16 :
2765
- data = data .astype (np .float32 )
2766
-
2767
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
2768
- if self .ftype == 1 and data_dtype == np .float16 and n_dims == 1 :
2769
- data = data .astype (np .float32 )
2770
-
2771
- # if f16 desired, convert any float32 2-dim weight tensors to float16
2772
- if self .ftype == 1 and data_dtype == np .float32 and name .endswith (".weight" ) and n_dims == 2 :
2773
- data = data .astype (np .float16 )
2774
-
2775
- print (f"=> { new_name } , shape = { data .shape } , { old_dtype } --> { data .dtype } " )
2776
-
2777
- self .gguf_writer .add_tensor (new_name , data )
2778
-
2779
- if not has_lm_head and name == "word_embeddings.weight" :
2780
- self .gguf_writer .add_tensor ("output.weight" , data )
2781
- print (name , f"=> output.weight, shape = { data .shape } , { old_dtype } --> { data .dtype } " )
2714
+ return [(self .map_tensor_name (name ), data_torch )]
2782
2715
2783
2716
2784
2717
###### CONVERSION LOGIC ######
0 commit comments