Skip to content

Commit 8ede7df

Browse files
committed
remove .rotary_pos_emb.inv_freq and unuse code for chatglm3 model
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
1 parent 768ccb2 commit 8ede7df

File tree

1 file changed

+8
-75
lines changed

1 file changed

+8
-75
lines changed

convert-hf-to-gguf.py

Lines changed: 8 additions & 75 deletions
Original file line numberDiff line numberDiff line change
@@ -2796,85 +2796,18 @@ def set_gguf_parameters(self):
27962796
self.gguf_writer.add_rope_dimension_count(64)
27972797
self.gguf_writer.add_add_bos_token(False)
27982798

2799-
def write_tensors(self):
2800-
block_count = self.hparams["num_layers"]
2801-
tensors = dict(self.get_tensors())
2802-
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
2803-
has_lm_head = True
2804-
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
2805-
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
2806-
2807-
for name, data_torch in tensors.items():
2808-
if name.endswith(".rotary_pos_emb.inv_freq"):
2809-
continue
2810-
2811-
if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
2812-
has_lm_head = False
2799+
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
2800+
if name.endswith(".rotary_pos_emb.inv_freq"):
2801+
return []
28132802

2814-
name = re.sub(r'transformer\.', '', name)
2803+
del bid # unused
28152804

2816-
old_dtype = data_torch.dtype
2805+
name = re.sub(r'transformer\.', '', name)
28172806

2818-
# convert any unsupported data types to float32
2819-
if data_torch.dtype not in (torch.float16, torch.float32):
2820-
data_torch = data_torch.to(torch.float32)
2807+
if name == "word_embeddings.weight":
2808+
assert self.tensor_names is not None
28212809

2822-
data = data_torch.squeeze().numpy()
2823-
2824-
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
2825-
# Map bloom-style qkv_linear to gpt-style qkv_linear
2826-
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
2827-
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
2828-
qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
2829-
data = np.concatenate(
2830-
(
2831-
qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
2832-
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
2833-
qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
2834-
),
2835-
axis=0,
2836-
)
2837-
print("re-format attention.linear_qkv.weight")
2838-
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
2839-
qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
2840-
data = np.concatenate(
2841-
(
2842-
qkv_bias[:, 0, :].reshape((n_embed,)),
2843-
qkv_bias[:, 1, :].reshape((n_embed,)),
2844-
qkv_bias[:, 2, :].reshape((n_embed,)),
2845-
),
2846-
axis=0,
2847-
)
2848-
print("re-format attention.linear_qkv.bias")
2849-
2850-
# map tensor names
2851-
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
2852-
if new_name is None:
2853-
print(f"Can not map tensor {name!r}")
2854-
sys.exit()
2855-
2856-
n_dims = len(data.shape)
2857-
data_dtype = data.dtype
2858-
2859-
# if f32 desired, convert any float16 to float32
2860-
if self.ftype == 0 and data_dtype == np.float16:
2861-
data = data.astype(np.float32)
2862-
2863-
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
2864-
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
2865-
data = data.astype(np.float32)
2866-
2867-
# if f16 desired, convert any float32 2-dim weight tensors to float16
2868-
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
2869-
data = data.astype(np.float16)
2870-
2871-
print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
2872-
2873-
self.gguf_writer.add_tensor(new_name, data)
2874-
2875-
if not has_lm_head and name == "word_embeddings.weight":
2876-
self.gguf_writer.add_tensor("output.weight", data)
2877-
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
2810+
return [(self.map_tensor_name(name), data_torch)]
28782811

28792812

28802813
###### CONVERSION LOGIC ######

0 commit comments

Comments
 (0)