@@ -68,14 +68,21 @@ llama_kv_cache_unified::llama_kv_cache_unified(
68
68
69
69
cells.resize (kv_size);
70
70
71
+ // [TAG_V_CACHE_VARIABLE]
72
+ if (v_trans && hparams.is_n_embd_v_gqa_variable ()) {
73
+ LLAMA_LOG_WARN (" %s: the V embeddings have different sizes across layers and FA is not enabled - padding V cache to %d\n " ,
74
+ __func__, hparams.n_embd_v_gqa_max ());
75
+ }
76
+
71
77
for (uint32_t il = 0 ; il < n_layer_cache; il++) {
72
78
if (filter && !filter (il)) {
73
79
LLAMA_LOG_DEBUG (" %s: layer %3d: skipped\n " , __func__, il);
74
80
continue ;
75
81
}
76
82
77
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa (il);
78
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa (il);
83
+ // [TAG_V_CACHE_VARIABLE]
84
+ const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa (il);
85
+ const uint32_t n_embd_v_gqa = !v_trans ? hparams.n_embd_v_gqa (il) : hparams.n_embd_v_gqa_max ();
79
86
80
87
const char * dev_name = " CPU" ;
81
88
@@ -98,8 +105,8 @@ llama_kv_cache_unified::llama_kv_cache_unified(
98
105
ggml_tensor * k;
99
106
ggml_tensor * v;
100
107
101
- k = ggml_new_tensor_2d (ctx, type_k, n_embd_k_gqa, kv_size);
102
- v = ggml_new_tensor_2d (ctx, type_v, n_embd_v_gqa, kv_size);
108
+ k = ggml_new_tensor_3d (ctx, type_k, n_embd_k_gqa, kv_size, 1 );
109
+ v = ggml_new_tensor_3d (ctx, type_v, n_embd_v_gqa, kv_size, 1 );
103
110
104
111
ggml_format_name (k, " cache_k_l%d" , il);
105
112
ggml_format_name (v, " cache_v_l%d" , il);
@@ -780,33 +787,47 @@ ggml_tensor * llama_kv_cache_unified::get_k(ggml_context * ctx, int32_t il, uint
780
787
781
788
auto * k = layers[ikv].k ;
782
789
783
- return ggml_view_3d (ctx, k,
784
- hparams.n_embd_head_k , hparams.n_head_kv (il), n_kv,
790
+ const uint64_t kv_size = get_size ();
791
+ const uint64_t n_embd_k_gqa = k->ne [0 ];
792
+
793
+ assert (n_embd_k_gqa == hparams.n_embd_k_gqa (il));
794
+
795
+ return ggml_view_4d (ctx, k,
796
+ hparams.n_embd_head_k , hparams.n_head_kv (il), n_kv, 1 ,
785
797
ggml_row_size (k->type , hparams.n_embd_head_k ),
786
- ggml_row_size (k->type , hparams.n_embd_k_gqa (il)),
787
- 0 );
798
+ ggml_row_size (k->type , n_embd_k_gqa),
799
+ ggml_row_size (k->type , n_embd_k_gqa*kv_size),
800
+ ggml_row_size (k->type , n_embd_k_gqa*kv_size)*0 );
788
801
}
789
802
790
803
ggml_tensor * llama_kv_cache_unified::get_v (ggml_context * ctx, int32_t il, uint32_t n_kv) const {
791
804
const int32_t ikv = map_layer_ids.at (il);
792
805
793
806
auto * v = layers[ikv].v ;
794
807
808
+ const uint64_t kv_size = get_size ();
809
+ const uint64_t n_embd_v_gqa = v->ne [0 ];
810
+
811
+ // [TAG_V_CACHE_VARIABLE]
812
+ assert (n_embd_v_gqa >= hparams.n_embd_v_gqa (il));
813
+
795
814
if (!v_trans) {
796
815
// note: v->nb[1] <= v->nb[2]
797
- return ggml_view_3d (ctx, v,
798
- hparams.n_embd_head_v , hparams.n_head_kv (il), n_kv,
799
- ggml_row_size (v->type , hparams.n_embd_head_v ), // v->nb[1]
800
- ggml_row_size (v->type , hparams.n_embd_v_gqa (il)), // v->nb[2]
801
- 0 );
816
+ return ggml_view_4d (ctx, v,
817
+ hparams.n_embd_head_v , hparams.n_head_kv (il), n_kv, 1 ,
818
+ ggml_row_size (v->type , hparams.n_embd_head_v ), // v->nb[1]
819
+ ggml_row_size (v->type , n_embd_v_gqa), // v->nb[2]
820
+ ggml_row_size (v->type , n_embd_v_gqa*kv_size), // v->nb[3]
821
+ ggml_row_size (v->type , n_embd_v_gqa*kv_size)*0 );
802
822
}
803
823
804
824
// note: v->nb[1] > v->nb[2]
805
- return ggml_view_3d (ctx, v,
806
- n_kv, hparams.n_head_kv (il), hparams.n_embd_head_v ,
807
- ggml_row_size (v->type , v->ne [1 ]*hparams.n_embd_head_v ), // v->nb[1]
808
- ggml_row_size (v->type , v->ne [1 ]), // v->nb[2]
809
- 0 );
825
+ return ggml_view_4d (ctx, v,
826
+ n_kv, hparams.n_head_kv (il), hparams.n_embd_head_v , 1 ,
827
+ ggml_row_size (v->type , kv_size*hparams.n_embd_head_v ), // v->nb[1]
828
+ ggml_row_size (v->type , kv_size), // v->nb[2]
829
+ ggml_row_size (v->type , kv_size*n_embd_v_gqa), // v->nb[3]
830
+ ggml_row_size (v->type , kv_size*n_embd_v_gqa)*0 );
810
831
}
811
832
812
833
ggml_tensor * llama_kv_cache_unified::cpy_k (ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il, const slot_info & sinfo) const {
@@ -820,6 +841,10 @@ ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_
820
841
k_cur = ggml_reshape_2d (ctx, k_cur, k->ne [0 ], n_tokens);
821
842
822
843
if (k_idxs && supports_set_rows) {
844
+ if (k->ne [2 ] > 1 ) {
845
+ k = ggml_reshape_2d (ctx, k, k->ne [0 ], k->ne [1 ]*k->ne [2 ]);
846
+ }
847
+
823
848
return ggml_set_rows (ctx, k, k_cur, k_idxs);
824
849
}
825
850
@@ -838,31 +863,30 @@ ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_
838
863
839
864
auto * v = layers[ikv].v ;
840
865
841
- const int64_t n_embd_v_gqa = v ->ne [0 ];
842
- const int64_t n_tokens = v_cur->ne [2 ];
866
+ const int64_t n_embd_v_gqa = v_cur ->ne [0 ]*v_cur-> ne [ 1 ];
867
+ const int64_t n_tokens = v_cur->ne [2 ];
843
868
844
869
v_cur = ggml_reshape_2d (ctx, v_cur, n_embd_v_gqa, n_tokens);
845
870
846
871
if (v_idxs && supports_set_rows) {
847
872
if (!v_trans) {
873
+ if (v->ne [2 ] > 1 ) {
874
+ v = ggml_reshape_2d (ctx, v, v->ne [0 ], v->ne [1 ]*v->ne [2 ]);
875
+ }
876
+
848
877
return ggml_set_rows (ctx, v, v_cur, v_idxs);
849
878
}
850
879
851
- // the row becomes a single element
852
- ggml_tensor * v_view = ggml_reshape_3d (ctx, v, 1 , v->ne [1 ], v->ne [0 ]);
880
+ // [TAG_V_CACHE_VARIABLE]
881
+ if (n_embd_v_gqa < v->ne [0 ]) {
882
+ v_cur = ggml_pad (ctx, v_cur, v->ne [0 ] - n_embd_v_gqa, 0 , 0 , 0 );
883
+ }
853
884
854
- // note: the V cache is transposed when not using flash attention
855
- v_cur = ggml_permute (ctx, ggml_reshape_3d (ctx, v_cur, v_cur ->ne [0 ], 1 , v_cur ->ne [1 ]), 2 , 0 , 1 , 3 );
885
+ // the row becomes a single element
886
+ ggml_tensor * v_view = ggml_reshape_2d (ctx, v, 1 , v ->ne [0 ]*v ->ne [1 ]*v-> ne [ 2 ] );
856
887
857
- // note: we can be more explicit here at the cost of extra cont
858
- // however, above we take advantage that a row of single element is always continuous regardless of the row stride
859
- // v_cur = ggml_transpose(ctx, v_cur);
860
- // v_cur = ggml_cont_3d(ctx, v_cur, 1, v_cur->ne[0], v_cur->ne[1]);
888
+ v_cur = ggml_reshape_2d (ctx, v_cur, 1 , v_cur->ne [0 ]*v_cur->ne [1 ]);
861
889
862
- // we broadcast the KV indices n_embd_v_gqa times
863
- // v [1, n_kv, n_embd_v_gqa]
864
- // v_cur [1, n_tokens, n_embd_v_gqa]
865
- // v_idxs [n_tokens, 1, 1]
866
890
return ggml_set_rows (ctx, v_view, v_cur, v_idxs);
867
891
}
868
892
@@ -899,7 +923,13 @@ ggml_tensor * llama_kv_cache_unified::build_input_k_idxs(ggml_context * ctx, con
899
923
ggml_tensor * llama_kv_cache_unified::build_input_v_idxs (ggml_context * ctx, const llama_ubatch & ubatch) const {
900
924
const uint32_t n_tokens = ubatch.n_tokens ;
901
925
902
- ggml_tensor * v_idxs = ggml_new_tensor_1d (ctx, GGML_TYPE_I64, n_tokens);
926
+ ggml_tensor * v_idxs;
927
+
928
+ if (!v_trans) {
929
+ v_idxs = ggml_new_tensor_1d (ctx, GGML_TYPE_I64, n_tokens);
930
+ } else {
931
+ v_idxs = ggml_new_tensor_1d (ctx, GGML_TYPE_I64, n_tokens*hparams.n_embd_v_gqa_max ());
932
+ }
903
933
904
934
ggml_set_input (v_idxs);
905
935
@@ -916,7 +946,7 @@ void llama_kv_cache_unified::set_input_k_idxs(ggml_tensor * dst, const llama_uba
916
946
GGML_ASSERT (ggml_backend_buffer_is_host (dst->buffer ));
917
947
int64_t * data = (int64_t *) dst->data ;
918
948
919
- for (int64_t i = 0 ; i < n_tokens; ++i) {
949
+ for (uint32_t i = 0 ; i < n_tokens; ++i) {
920
950
data[i] = sinfo.idxs .at (i);
921
951
}
922
952
}
@@ -931,8 +961,21 @@ void llama_kv_cache_unified::set_input_v_idxs(ggml_tensor * dst, const llama_uba
931
961
GGML_ASSERT (ggml_backend_buffer_is_host (dst->buffer ));
932
962
int64_t * data = (int64_t *) dst->data ;
933
963
934
- for (int64_t i = 0 ; i < n_tokens; ++i) {
935
- data[i] = sinfo.idxs .at (i);
964
+ if (!v_trans) {
965
+ for (uint32_t i = 0 ; i < n_tokens; ++i) {
966
+ data[i] = sinfo.idxs .at (i);
967
+ }
968
+ } else {
969
+ // note: the V cache is transposed when not using flash attention
970
+ const int64_t kv_size = get_size ();
971
+
972
+ const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa_max ();
973
+
974
+ for (uint32_t i = 0 ; i < n_tokens; ++i) {
975
+ for (uint32_t j = 0 ; j < n_embd_v_gqa; ++j) {
976
+ data[i*n_embd_v_gqa + j] = j*kv_size + sinfo.idxs .at (i);
977
+ }
978
+ }
936
979
}
937
980
}
938
981
0 commit comments