|
| 1 | +#include "set_rows.hpp" |
| 2 | + |
| 3 | +namespace utils { |
| 4 | +template<typename T> |
| 5 | +static constexpr bool is_arithmetic_v() { |
| 6 | + return std::is_arithmetic_v<T> || std::is_same_v<T, sycl::half> || std::is_same_v<T, sycl::ext::oneapi::bfloat16>; |
| 7 | +} |
| 8 | +} |
| 9 | +template<typename TIn, typename TOut> |
| 10 | +static inline std::enable_if_t<utils::is_arithmetic_v<TIn>() && utils::is_arithmetic_v<TOut>(), void> |
| 11 | +convert (const char* src, char* dst) { |
| 12 | + auto src_val = *reinterpret_cast<const TIn*>(src); |
| 13 | + auto dst_val = sycl::vec<TIn, 1>(src_val).template convert<TOut, sycl::rounding_mode::automatic>()[0]; |
| 14 | + *reinterpret_cast<TOut*>(dst) = dst_val;; |
| 15 | +} |
| 16 | + |
| 17 | +template<typename TIn, typename TOut> |
| 18 | +static void k_set_rows( |
| 19 | + const char * __restrict__ src0, const int64_t * __restrict__ src1, char * __restrict__ dst, |
| 20 | + const int64_t ne00, const int64_t ne01, const int64_t ne11, const int64_t ne12, |
| 21 | + const size_t nb01, const size_t nb02, const size_t nb03, |
| 22 | + const size_t nb10, const size_t nb11, const size_t nb12, |
| 23 | + const size_t nb1, const size_t nb2, const size_t nb3, |
| 24 | + const size_t src_type_size, const size_t dst_type_size, |
| 25 | + const sycl::nd_item<3> & item_ct1) { |
| 26 | + |
| 27 | + const int i03 = item_ct1.get_group(0); |
| 28 | + const int i02 = item_ct1.get_group(1); |
| 29 | + const int i01 = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); // Row index |
| 30 | + |
| 31 | + if (i01 >= ne01) { |
| 32 | + return; |
| 33 | + } |
| 34 | + |
| 35 | + const int i12 = i03 % ne12; |
| 36 | + const int i11 = i02 % ne11; |
| 37 | + const int i10 = i01; |
| 38 | + |
| 39 | + const int64_t dst_row = *(const int64_t *)((const char *)src1 + calculate_offset<3>({nb10, nb11, nb12}, {i10, i11, i12})); |
| 40 | + |
| 41 | + const char * src0_row = src0 + calculate_offset<3>({nb01, nb02, nb03}, {i01, i02, i03}); |
| 42 | + char * dst_row_ptr = dst + dst_row*nb1 + i02*nb2 + i03*nb3; |
| 43 | + |
| 44 | + for (int col = item_ct1.get_local_id(0); col < ne00; col += item_ct1.get_local_range(0)) { |
| 45 | + const char * src_elem = src0_row + col * src_type_size; |
| 46 | + char * dst_elem = dst_row_ptr + col * dst_type_size; |
| 47 | + convert<TIn, TOut>(src_elem, dst_elem); |
| 48 | + } |
| 49 | +} |
| 50 | + |
| 51 | +template<typename TIn, typename TOut> |
| 52 | +static void set_rows_sycl( |
| 53 | + const char * src0_d, const int64_t * src1_d, char * dst_d, |
| 54 | + const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03, |
| 55 | + const int64_t ne11, const int64_t ne12, const size_t nb01, const size_t nb02, const size_t nb03, |
| 56 | + const size_t nb10, const size_t nb11, const size_t nb12, |
| 57 | + const size_t nb1, const size_t nb2, const size_t nb3, |
| 58 | + const size_t src_type_size, const size_t dst_type_size, |
| 59 | + queue_ptr stream) { |
| 60 | + |
| 61 | + constexpr int max_threads_per_row = 64; // KEEPING 64 for now |
| 62 | + const int threads_per_row = std::min((int)ne00, max_threads_per_row); |
| 63 | + |
| 64 | + constexpr int max_threads_per_block = 64; |
| 65 | + const int rows_per_block = std::max(1, max_threads_per_block / threads_per_row); |
| 66 | + |
| 67 | + const sycl::range<3> block_size(1, rows_per_block, threads_per_row); |
| 68 | + const sycl::range<3> grid_size(ne03, ne02, (ne01 + rows_per_block - 1) / rows_per_block); |
| 69 | + |
| 70 | + sycl_parallel_for( |
| 71 | + stream, |
| 72 | + sycl::nd_range<3>(grid_size * block_size, block_size), |
| 73 | + [=](sycl::nd_item<3> item_ct1) { |
| 74 | + k_set_rows<TIn, TOut>( |
| 75 | + src0_d, src1_d, dst_d, |
| 76 | + ne00, ne01, ne11, ne12, |
| 77 | + nb01, nb02, nb03, |
| 78 | + nb10, nb11, nb12, |
| 79 | + nb1, nb2, nb3, |
| 80 | + src_type_size, dst_type_size, |
| 81 | + item_ct1 |
| 82 | + ); |
| 83 | + } |
| 84 | + ); |
| 85 | +} |
| 86 | + |
| 87 | + |
| 88 | +void ggml_sycl_op_set_rows(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { |
| 89 | + scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2); |
| 90 | + const ggml_tensor * src0 = dst->src[0]; |
| 91 | + const ggml_tensor * src1 = dst->src[1]; |
| 92 | + |
| 93 | + GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); |
| 94 | + GGML_ASSERT(dst->src[1]->type == GGML_TYPE_I64); |
| 95 | + |
| 96 | + GGML_TENSOR_BINARY_OP_LOCALS |
| 97 | + |
| 98 | + const int64_t * src1_dd = static_cast<const int64_t *>(src1->data); |
| 99 | + |
| 100 | + dpct::queue_ptr stream = ctx.stream(); |
| 101 | + switch (dst->type) { |
| 102 | + case GGML_TYPE_F32: |
| 103 | + set_rows_sycl<float, float>( |
| 104 | + (const char *)src0->data, src1_dd, (char *)dst->data, |
| 105 | + ne00, ne01, ne02, ne03, |
| 106 | + ne11, ne12, |
| 107 | + nb01, nb02, nb03, |
| 108 | + nb10, nb11, nb12, |
| 109 | + nb1, nb2, nb3, |
| 110 | + sizeof(float), sizeof(float), |
| 111 | + stream |
| 112 | + ); |
| 113 | + break; |
| 114 | + case GGML_TYPE_F16: |
| 115 | + dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 }); |
| 116 | + set_rows_sycl<float, sycl::half>( |
| 117 | + (const char *)src0->data, src1_dd, (char *)dst->data, |
| 118 | + ne00, ne01, ne02, ne03, |
| 119 | + ne11, ne12, |
| 120 | + nb01, nb02, nb03, |
| 121 | + nb10, nb11, nb12, |
| 122 | + nb1, nb2, nb3, |
| 123 | + sizeof(float), sizeof(sycl::half), |
| 124 | + stream |
| 125 | + ); |
| 126 | + break; |
| 127 | + default: |
| 128 | + GGML_ABORT("Unsupported tensor type!"); |
| 129 | + break; |
| 130 | + } |
| 131 | +} |
0 commit comments