Skip to content

Commit 5a914ff

Browse files
committed
remove .rotary_pos_emb.inv_freq and unuse code for chatglm3 model
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
1 parent 6630a2d commit 5a914ff

File tree

1 file changed

+8
-75
lines changed

1 file changed

+8
-75
lines changed

convert-hf-to-gguf.py

Lines changed: 8 additions & 75 deletions
Original file line numberDiff line numberDiff line change
@@ -2790,85 +2790,18 @@ def set_gguf_parameters(self):
27902790
self.gguf_writer.add_rope_dimension_count(64)
27912791
self.gguf_writer.add_add_bos_token(False)
27922792

2793-
def write_tensors(self):
2794-
block_count = self.hparams["num_layers"]
2795-
tensors = dict(self.get_tensors())
2796-
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
2797-
has_lm_head = True
2798-
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
2799-
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
2800-
2801-
for name, data_torch in tensors.items():
2802-
if name.endswith(".rotary_pos_emb.inv_freq"):
2803-
continue
2804-
2805-
if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
2806-
has_lm_head = False
2793+
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
2794+
if name.endswith(".rotary_pos_emb.inv_freq"):
2795+
return []
28072796

2808-
name = re.sub(r'transformer\.', '', name)
2797+
del bid # unused
28092798

2810-
old_dtype = data_torch.dtype
2799+
name = re.sub(r'transformer\.', '', name)
28112800

2812-
# convert any unsupported data types to float32
2813-
if data_torch.dtype not in (torch.float16, torch.float32):
2814-
data_torch = data_torch.to(torch.float32)
2801+
if name == "word_embeddings.weight":
2802+
assert self.tensor_names is not None
28152803

2816-
data = data_torch.squeeze().numpy()
2817-
2818-
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
2819-
# Map bloom-style qkv_linear to gpt-style qkv_linear
2820-
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
2821-
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
2822-
qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
2823-
data = np.concatenate(
2824-
(
2825-
qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
2826-
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
2827-
qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
2828-
),
2829-
axis=0,
2830-
)
2831-
print("re-format attention.linear_qkv.weight")
2832-
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
2833-
qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
2834-
data = np.concatenate(
2835-
(
2836-
qkv_bias[:, 0, :].reshape((n_embed,)),
2837-
qkv_bias[:, 1, :].reshape((n_embed,)),
2838-
qkv_bias[:, 2, :].reshape((n_embed,)),
2839-
),
2840-
axis=0,
2841-
)
2842-
print("re-format attention.linear_qkv.bias")
2843-
2844-
# map tensor names
2845-
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
2846-
if new_name is None:
2847-
print(f"Can not map tensor {name!r}")
2848-
sys.exit()
2849-
2850-
n_dims = len(data.shape)
2851-
data_dtype = data.dtype
2852-
2853-
# if f32 desired, convert any float16 to float32
2854-
if self.ftype == 0 and data_dtype == np.float16:
2855-
data = data.astype(np.float32)
2856-
2857-
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
2858-
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
2859-
data = data.astype(np.float32)
2860-
2861-
# if f16 desired, convert any float32 2-dim weight tensors to float16
2862-
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
2863-
data = data.astype(np.float16)
2864-
2865-
print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
2866-
2867-
self.gguf_writer.add_tensor(new_name, data)
2868-
2869-
if not has_lm_head and name == "word_embeddings.weight":
2870-
self.gguf_writer.add_tensor("output.weight", data)
2871-
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
2804+
return [(self.map_tensor_name(name), data_torch)]
28722805

28732806

28742807
###### CONVERSION LOGIC ######

0 commit comments

Comments
 (0)