@@ -262,12 +262,12 @@ static size_t checked_div(size_t a, size_t b) {
262
262
}
263
263
264
264
static std::string llama_format_tensor_shape (const std::vector<uint32_t > & ne) {
265
- std::string ret = " [" + std::to_string (ne.at (0 ));
265
+ char buf[256 ];
266
+ snprintf (buf, sizeof (buf), " %5u" , ne.at (0 ));
266
267
for (size_t i = 1 ; i < ne.size (); i++) {
267
- ret += " x " + std::to_string ( ne.at (i));
268
+ snprintf (buf + strlen (buf), sizeof (buf) - strlen (buf), " x %5u " , ne.at (i));
268
269
}
269
- ret += " ]" ;
270
- return ret;
270
+ return buf;
271
271
}
272
272
273
273
static size_t llama_calc_tensor_size (const std::vector<uint32_t > & ne, enum ggml_type type) {
@@ -942,8 +942,8 @@ static void llama_model_load_internal(
942
942
ml->ggml_ctx = ctx;
943
943
944
944
model.tok_embeddings = ml->get_tensor (" tok_embeddings.weight" , {n_embd, n_vocab});
945
- model.norm = ml->get_tensor (" norm.weight" , {n_embd});
946
- model.output = ml->get_tensor (" output.weight" , {n_embd, n_vocab});
945
+ model.norm = ml->get_tensor (" norm.weight" , {n_embd});
946
+ model.output = ml->get_tensor (" output.weight" , {n_embd, n_vocab});
947
947
948
948
model.layers .resize (n_layer);
949
949
for (uint32_t i = 0 ; i < n_layer; ++i) {
@@ -1570,7 +1570,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
1570
1570
tensor.data = read_data.addr ;
1571
1571
model_loader->load_data_for (tensor);
1572
1572
1573
- printf (" [%zu/%zu ] %36s - %s , type = %6s, " ,
1573
+ printf (" [%4zu/%4zu ] %36s - %16s , type = %6s, " ,
1574
1574
++idx, model_loader->tensors_map .tensors .size (),
1575
1575
tensor.name .c_str (), llama_format_tensor_shape (tensor.ne ).c_str (),
1576
1576
ggml_type_name (tensor.type ));
0 commit comments