Skip to content

Commit 2a738fe

Browse files
committed
kv-cache : prepare K/V buffers for separation
ggml-ci
1 parent 7b63a71 commit 2a738fe

File tree

3 files changed

+87
-31
lines changed

3 files changed

+87
-31
lines changed

src/llama-hparams.cpp

Lines changed: 22 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -65,6 +65,28 @@ uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
6565
return n_embd_head_v * n_head_kv;
6666
}
6767

68+
bool llama_hparams::is_n_embd_k_gqa_homogeneous() const {
69+
uint32_t val = n_embd_k_gqa();
70+
for (uint32_t il = 0; il < n_layer; ++il) {
71+
if (val != n_embd_k_gqa(il)) {
72+
return false;
73+
}
74+
}
75+
76+
return true;
77+
}
78+
79+
bool llama_hparams::is_n_embd_v_gqa_homogeneous() const {
80+
uint32_t val = n_embd_v_gqa();
81+
for (uint32_t il = 0; il < n_layer; ++il) {
82+
if (val != n_embd_v_gqa(il)) {
83+
return false;
84+
}
85+
}
86+
87+
return true;
88+
}
89+
6890
uint32_t llama_hparams::n_embd_r() const {
6991
if (wkv_head_size != 0) {
7092
// for RWKV models

src/llama-hparams.h

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -189,6 +189,10 @@ struct llama_hparams {
189189
// dimension of value embeddings across all k-v heads
190190
uint32_t n_embd_v_gqa(uint32_t il = 0) const;
191191

192+
// true if all layers have the same n_embd_k_gqa/n_embd_v_gqa
193+
bool is_n_embd_k_gqa_homogeneous() const;
194+
bool is_n_embd_v_gqa_homogeneous() const;
195+
192196
// dimension of the rolling state embeddings
193197
// corresponds to Mamba's conv_states size or RWKV's token_shift states size
194198
uint32_t n_embd_r() const;

src/llama-kv-cache-unified.cpp

Lines changed: 61 additions & 31 deletions
Original file line numberDiff line numberDiff line change
@@ -68,6 +68,12 @@ llama_kv_cache_unified::llama_kv_cache_unified(
6868

6969
cells.resize(kv_size);
7070

71+
if (supports_set_rows) {
72+
// TODO: this requirement can be relaxed, but it would be much easier to implement when we have an actual
73+
// model that needs this
74+
GGML_ASSERT(hparams.is_n_embd_k_gqa_homogeneous() && hparams.is_n_embd_v_gqa_homogeneous());
75+
}
76+
7177
for (uint32_t il = 0; il < n_layer_cache; il++) {
7278
if (filter && !filter(il)) {
7379
LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, il);
@@ -98,8 +104,8 @@ llama_kv_cache_unified::llama_kv_cache_unified(
98104
ggml_tensor * k;
99105
ggml_tensor * v;
100106

101-
k = ggml_new_tensor_2d(ctx, type_k, n_embd_k_gqa, kv_size);
102-
v = ggml_new_tensor_2d(ctx, type_v, n_embd_v_gqa, kv_size);
107+
k = ggml_new_tensor_3d(ctx, type_k, n_embd_k_gqa, kv_size, 1);
108+
v = ggml_new_tensor_3d(ctx, type_v, n_embd_v_gqa, kv_size, 1);
103109

104110
ggml_format_name(k, "cache_k_l%d", il);
105111
ggml_format_name(v, "cache_v_l%d", il);
@@ -780,33 +786,40 @@ ggml_tensor * llama_kv_cache_unified::get_k(ggml_context * ctx, int32_t il, uint
780786

781787
auto * k = layers[ikv].k;
782788

783-
return ggml_view_3d(ctx, k,
784-
hparams.n_embd_head_k, hparams.n_head_kv(il), n_kv,
789+
const uint64_t kv_size = get_size();
790+
791+
return ggml_view_4d(ctx, k,
792+
hparams.n_embd_head_k, hparams.n_head_kv(il), n_kv, 1,
785793
ggml_row_size(k->type, hparams.n_embd_head_k),
786794
ggml_row_size(k->type, hparams.n_embd_k_gqa(il)),
787-
0);
795+
ggml_row_size(k->type, hparams.n_embd_k_gqa(il)*kv_size),
796+
ggml_row_size(k->type, hparams.n_embd_k_gqa(il)*kv_size)*0);
788797
}
789798

790799
ggml_tensor * llama_kv_cache_unified::get_v(ggml_context * ctx, int32_t il, uint32_t n_kv) const {
791800
const int32_t ikv = map_layer_ids.at(il);
792801

793802
auto * v = layers[ikv].v;
794803

804+
const uint64_t kv_size = get_size();
805+
795806
if (!v_trans) {
796807
// note: v->nb[1] <= v->nb[2]
797-
return ggml_view_3d(ctx, v,
798-
hparams.n_embd_head_v, hparams.n_head_kv(il), n_kv,
799-
ggml_row_size(v->type, hparams.n_embd_head_v), // v->nb[1]
800-
ggml_row_size(v->type, hparams.n_embd_v_gqa(il)), // v->nb[2]
801-
0);
808+
return ggml_view_4d(ctx, v,
809+
hparams.n_embd_head_v, hparams.n_head_kv(il), n_kv, 1,
810+
ggml_row_size(v->type, hparams.n_embd_head_v), // v->nb[1]
811+
ggml_row_size(v->type, hparams.n_embd_v_gqa(il)), // v->nb[2]
812+
ggml_row_size(v->type, hparams.n_embd_v_gqa(il)*kv_size), // v->nb[3]
813+
ggml_row_size(v->type, hparams.n_embd_v_gqa(il)*kv_size)*0);
802814
}
803815

804816
// note: v->nb[1] > v->nb[2]
805-
return ggml_view_3d(ctx, v,
806-
n_kv, hparams.n_head_kv(il), hparams.n_embd_head_v,
807-
ggml_row_size(v->type, v->ne[1]*hparams.n_embd_head_v), // v->nb[1]
808-
ggml_row_size(v->type, v->ne[1]), // v->nb[2]
809-
0);
817+
return ggml_view_4d(ctx, v,
818+
n_kv, hparams.n_head_kv(il), hparams.n_embd_head_v, 1,
819+
ggml_row_size(v->type, kv_size*hparams.n_embd_head_v), // v->nb[1]
820+
ggml_row_size(v->type, kv_size), // v->nb[2]
821+
ggml_row_size(v->type, kv_size*hparams.n_embd_v_gqa(il)), // v->nb[3]
822+
ggml_row_size(v->type, kv_size*hparams.n_embd_v_gqa(il))*0);
810823
}
811824

812825
ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il, const slot_info & sinfo) const {
@@ -820,6 +833,10 @@ ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_
820833
k_cur = ggml_reshape_2d(ctx, k_cur, k->ne[0], n_tokens);
821834

822835
if (k_idxs && supports_set_rows) {
836+
if (k->ne[2] > 1) {
837+
k = ggml_reshape_2d(ctx, k, k->ne[0], k->ne[1]*k->ne[2]);
838+
}
839+
823840
return ggml_set_rows(ctx, k, k_cur, k_idxs);
824841
}
825842

@@ -845,24 +862,18 @@ ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_
845862

846863
if (v_idxs && supports_set_rows) {
847864
if (!v_trans) {
865+
if (v->ne[2] > 1) {
866+
v = ggml_reshape_2d(ctx, v, v->ne[0], v->ne[1]*v->ne[2]);
867+
}
868+
848869
return ggml_set_rows(ctx, v, v_cur, v_idxs);
849870
}
850871

851872
// the row becomes a single element
852-
ggml_tensor * v_view = ggml_reshape_3d(ctx, v, 1, v->ne[1], v->ne[0]);
853-
854-
// note: the V cache is transposed when not using flash attention
855-
v_cur = ggml_permute(ctx, ggml_reshape_3d(ctx, v_cur, v_cur->ne[0], 1, v_cur->ne[1]), 2, 0, 1, 3);
873+
ggml_tensor * v_view = ggml_reshape_2d(ctx, v, 1, v->ne[0]*v->ne[1]*v->ne[2]);
856874

857-
// note: we can be more explicit here at the cost of extra cont
858-
// however, above we take advantage that a row of single element is always continuous regardless of the row stride
859-
//v_cur = ggml_transpose(ctx, v_cur);
860-
//v_cur = ggml_cont_3d(ctx, v_cur, 1, v_cur->ne[0], v_cur->ne[1]);
875+
v_cur = ggml_reshape_2d(ctx, v_cur, 1, v_cur->ne[0]*v_cur->ne[1]);
861876

862-
// we broadcast the KV indices n_embd_v_gqa times
863-
// v [1, n_kv, n_embd_v_gqa]
864-
// v_cur [1, n_tokens, n_embd_v_gqa]
865-
// v_idxs [n_tokens, 1, 1]
866877
return ggml_set_rows(ctx, v_view, v_cur, v_idxs);
867878
}
868879

@@ -899,7 +910,13 @@ ggml_tensor * llama_kv_cache_unified::build_input_k_idxs(ggml_context * ctx, con
899910
ggml_tensor * llama_kv_cache_unified::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
900911
const uint32_t n_tokens = ubatch.n_tokens;
901912

902-
ggml_tensor * v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);
913+
ggml_tensor * v_idxs;
914+
915+
if (!v_trans) {
916+
v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);
917+
} else {
918+
v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens*hparams.n_embd_v_gqa());
919+
}
903920

904921
ggml_set_input(v_idxs);
905922

@@ -916,7 +933,7 @@ void llama_kv_cache_unified::set_input_k_idxs(ggml_tensor * dst, const llama_uba
916933
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
917934
int64_t * data = (int64_t *) dst->data;
918935

919-
for (int64_t i = 0; i < n_tokens; ++i) {
936+
for (uint32_t i = 0; i < n_tokens; ++i) {
920937
data[i] = sinfo.idxs.at(i);
921938
}
922939
}
@@ -931,8 +948,21 @@ void llama_kv_cache_unified::set_input_v_idxs(ggml_tensor * dst, const llama_uba
931948
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
932949
int64_t * data = (int64_t *) dst->data;
933950

934-
for (int64_t i = 0; i < n_tokens; ++i) {
935-
data[i] = sinfo.idxs.at(i);
951+
if (!v_trans) {
952+
for (uint32_t i = 0; i < n_tokens; ++i) {
953+
data[i] = sinfo.idxs.at(i);
954+
}
955+
} else {
956+
// note: the V cache is transposed when not using flash attention
957+
const int64_t kv_size = get_size();
958+
959+
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
960+
961+
for (uint32_t i = 0; i < n_tokens; ++i) {
962+
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
963+
data[i*n_embd_v_gqa + j] = j*kv_size + sinfo.idxs.at(i);
964+
}
965+
}
936966
}
937967
}
938968

0 commit comments

Comments
 (0)