@@ -2507,85 +2507,18 @@ def set_gguf_parameters(self):
2507
2507
self .gguf_writer .add_rope_dimension_count (64 )
2508
2508
self .gguf_writer .add_add_bos_token (False )
2509
2509
2510
- def write_tensors (self ):
2511
- block_count = self .hparams ["num_layers" ]
2512
- tensors = dict (self .get_tensors ())
2513
- tensor_map = gguf .get_tensor_name_map (self .model_arch , block_count )
2514
- has_lm_head = True
2515
- n_head = self .hparams .get ("n_head" , self .hparams .get ("num_attention_heads" ))
2516
- n_embed = self .hparams .get ("hidden_size" , self .hparams .get ("n_embed" ))
2517
-
2518
- for name , data_torch in tensors .items ():
2519
- if name .endswith (".rotary_pos_emb.inv_freq" ):
2520
- continue
2521
-
2522
- if "lm_head.weight" not in tensors .keys () and "output.weight" not in tensors .keys ():
2523
- has_lm_head = False
2510
+ def modify_tensors (self , data_torch : Tensor , name : str , bid : int | None ) -> Iterable [tuple [str , Tensor ]]:
2511
+ if name .endswith (".rotary_pos_emb.inv_freq" ):
2512
+ return []
2524
2513
2525
- name = re . sub ( r'transformer\.' , '' , name )
2514
+ del bid # unused
2526
2515
2527
- old_dtype = data_torch . dtype
2516
+ name = re . sub ( r'transformer\.' , '' , name )
2528
2517
2529
- # convert any unsupported data types to float32
2530
- if data_torch .dtype not in (torch .float16 , torch .float32 ):
2531
- data_torch = data_torch .to (torch .float32 )
2518
+ if name == "word_embeddings.weight" :
2519
+ assert self .tensor_names is not None
2532
2520
2533
- data = data_torch .squeeze ().numpy ()
2534
-
2535
- if re .match (r"h\.\d+\.self_attention\.query_key_value\.weight" , name ):
2536
- # Map bloom-style qkv_linear to gpt-style qkv_linear
2537
- # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
2538
- # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
2539
- qkv_weights = data .reshape ((n_head , 3 , n_embed // n_head , n_embed ))
2540
- data = np .concatenate (
2541
- (
2542
- qkv_weights [:, 0 , :, :].reshape ((- 1 , n_embed )),
2543
- qkv_weights [:, 1 , :, :].reshape ((- 1 , n_embed )),
2544
- qkv_weights [:, 2 , :, :].reshape ((- 1 , n_embed )),
2545
- ),
2546
- axis = 0 ,
2547
- )
2548
- print ("re-format attention.linear_qkv.weight" )
2549
- elif re .match (r"h\.\d+\.self_attention\.query_key_value\.bias" , name ):
2550
- qkv_bias = data .reshape ((n_head , 3 , n_embed // n_head ))
2551
- data = np .concatenate (
2552
- (
2553
- qkv_bias [:, 0 , :].reshape ((n_embed ,)),
2554
- qkv_bias [:, 1 , :].reshape ((n_embed ,)),
2555
- qkv_bias [:, 2 , :].reshape ((n_embed ,)),
2556
- ),
2557
- axis = 0 ,
2558
- )
2559
- print ("re-format attention.linear_qkv.bias" )
2560
-
2561
- # map tensor names
2562
- new_name = tensor_map .get_name (name , try_suffixes = (".weight" , ".bias" ))
2563
- if new_name is None :
2564
- print (f"Can not map tensor { name !r} " )
2565
- sys .exit ()
2566
-
2567
- n_dims = len (data .shape )
2568
- data_dtype = data .dtype
2569
-
2570
- # if f32 desired, convert any float16 to float32
2571
- if self .ftype == 0 and data_dtype == np .float16 :
2572
- data = data .astype (np .float32 )
2573
-
2574
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
2575
- if self .ftype == 1 and data_dtype == np .float16 and n_dims == 1 :
2576
- data = data .astype (np .float32 )
2577
-
2578
- # if f16 desired, convert any float32 2-dim weight tensors to float16
2579
- if self .ftype == 1 and data_dtype == np .float32 and name .endswith (".weight" ) and n_dims == 2 :
2580
- data = data .astype (np .float16 )
2581
-
2582
- print (f"=> { new_name } , shape = { data .shape } , { old_dtype } --> { data .dtype } " )
2583
-
2584
- self .gguf_writer .add_tensor (new_name , data )
2585
-
2586
- if not has_lm_head and name == "word_embeddings.weight" :
2587
- self .gguf_writer .add_tensor ("output.weight" , data )
2588
- print (name , f"=> output.weight, shape = { data .shape } , { old_dtype } --> { data .dtype } " )
2521
+ return [(self .map_tensor_name (name ), data_torch )]
2589
2522
2590
2523
2591
2524
###### CONVERSION LOGIC ######
0 commit comments