@@ -38,8 +38,7 @@ def test_basic_gempy_I() -> None:
38
38
39
39
geo_model .grid .active_grids = gp .data .Grid .GridTypes .CUSTOM
40
40
assert geo_model .grid .values .shape [0 ] == 100 , "Custom grid should have 100 cells"
41
- geo_model .counter = 0
42
- gp .compute_model (gempy_model = geo_model )
41
+ gp .compute_model (gempy_model = geo_model , validate_serialization = False )
43
42
BackendTensor .change_backend_gempy (engine_backend = gp .data .AvailableBackends .PYTORCH )
44
43
45
44
normal = dist .Normal (
@@ -74,7 +73,7 @@ def _prob_run(geo_model: gp.data.GeoModel, prob_model: callable,
74
73
num_samples = 50
75
74
)
76
75
prior = predictive (geo_model , normal , y_obs_list )
77
- print ("Number of interpolations: " , geo_model .counter )
76
+ # print("Number of interpolations: ", geo_model.counter)
78
77
79
78
data = az .from_pyro (prior = prior )
80
79
az .plot_trace (data .prior )
@@ -109,7 +108,7 @@ def _prob_run(geo_model: gp.data.GeoModel, prob_model: callable,
109
108
data = az .from_pyro (posterior = mcmc , prior = prior , posterior_predictive = posterior_predictive )
110
109
# endregion
111
110
112
- print ("Number of interpolations: " , geo_model .counter )
111
+ # print("Number of interpolations: ", geo_model.counter)
113
112
114
113
if True : # * Save the arviz data
115
114
data .to_netcdf ("arviz_data.nc" )
0 commit comments