|
| 1 | +import os |
| 2 | +import gempy as gp |
| 3 | +import gempy_engine |
| 4 | +import numpy as np |
| 5 | + |
| 6 | +def test_basic_gempy_I(): |
| 7 | + current_dir = os.path.dirname(os.path.abspath(__file__)) |
| 8 | + data_path = os.path.abspath(os.path.join(current_dir, '..', '..', 'examples', 'tutorials', 'data')) |
| 9 | + geo_model = gp.create_geomodel( |
| 10 | + project_name='Wells', |
| 11 | + extent=[0, 12000, -500, 500, 0, 4000], |
| 12 | + refinement=3, |
| 13 | + importer_helper=gp.data.ImporterHelper( |
| 14 | + path_to_orientations=os.path.join(data_path, "2-layers", "2-layers_orientations.csv"), |
| 15 | + path_to_surface_points=os.path.join(data_path, "2-layers", "2-layers_surface_points.csv") |
| 16 | + ) |
| 17 | + ) |
| 18 | + |
| 19 | + # TODO: Convert this into an options preset |
| 20 | + geo_model.interpolation_options.uni_degree = 0 |
| 21 | + geo_model.interpolation_options.mesh_extraction = False |
| 22 | + geo_model.interpolation_options.sigmoid_slope = 1100. |
| 23 | + |
| 24 | + |
| 25 | + x_loc = 6000 |
| 26 | + y_loc = 0 |
| 27 | + z_loc = np.linspace(0, 4000, 100) |
| 28 | + xyz_coord = np.array([[x_loc, y_loc, z] for z in z_loc]) |
| 29 | + gp.set_custom_grid(geo_model.grid, xyz_coord=xyz_coord) |
| 30 | + |
| 31 | + # TODO: Make sure only the custom grid ins active |
| 32 | + |
| 33 | + gp.compute_model( |
| 34 | + gempy_model=geo_model, |
| 35 | + engine_config=gp.data.GemPyEngineConfig(backend=gp.data.AvailableBackends.numpy) |
| 36 | + ) |
| 37 | + |
| 38 | + # TODO: This is the part that has to go to a function no question |
| 39 | + # Probabilistic Geomodeling with Pyro |
| 40 | + # ----------------------------------- |
| 41 | + # In this section, we introduce a probabilistic approach to geological modeling. |
| 42 | + # By using Pyro, a probabilistic programming language, we define a model that integrates |
| 43 | + # geological data with uncertainty quantification. |
| 44 | + |
| 45 | + from gempy_engine.core.data.interpolation_input import InterpolationInput |
| 46 | + from gempy_engine.core.backend_tensor import BackendTensor |
| 47 | + |
| 48 | + from gempy.modules.data_manipulation.engine_factory import interpolation_input_from_structural_frame |
| 49 | + |
| 50 | + interpolation_input_copy: InterpolationInput = interpolation_input_from_structural_frame(geo_model) |
| 51 | + sp_coords_copy = interpolation_input_copy.surface_points.sp_coords |
| 52 | + # Change the backend to PyTorch for probabilistic modeling |
| 53 | + BackendTensor.change_backend_gempy(engine_backend=gp.data.AvailableBackends.PYTORCH) |
| 54 | + |
| 55 | + # Defining the Probabilistic Model |
| 56 | + # -------------------------------- |
| 57 | + # The Pyro model represents the probabilistic aspects of the geological model. |
| 58 | + # It defines a prior distribution for the top layer's location and computes the thickness |
| 59 | + # of the geological layer as an observed variable. |
| 60 | + |
| 61 | + def model(y_obs_list): |
| 62 | + """ |
| 63 | + This Pyro model represents the probabilistic aspects of the geological model. |
| 64 | + It defines a prior distribution for the top layer's location and |
| 65 | + computes the thickness of the geological layer as an observed variable. |
| 66 | + """ |
| 67 | + # Define prior for the top layer's location: |
| 68 | + prior_mean = sp_coords_copy[0, 2] |
| 69 | + import pyro |
| 70 | + import pyro.distributions as dist |
| 71 | + import torch |
| 72 | + mu_top = pyro.sample(r'$\mu_{top}$', dist.Normal(prior_mean, torch.tensor(0.02, dtype=torch.float64))) |
| 73 | + |
| 74 | + # Update the model with the new top layer's location |
| 75 | + interpolation_input = interpolation_input_from_structural_frame(geo_model) |
| 76 | + interpolation_input.surface_points.sp_coords = torch.index_put( |
| 77 | + interpolation_input.surface_points.sp_coords, |
| 78 | + (torch.tensor([0]), torch.tensor([2])), |
| 79 | + mu_top |
| 80 | + ) |
| 81 | + |
| 82 | + # Compute the geological model |
| 83 | + geo_model.solutions = gempy_engine.compute_model( |
| 84 | + interpolation_input=interpolation_input, |
| 85 | + options=geo_model.interpolation_options, |
| 86 | + data_descriptor=geo_model.input_data_descriptor, |
| 87 | + geophysics_input=geo_model.geophysics_input, |
| 88 | + ) |
| 89 | + |
| 90 | + # Compute and observe the thickness of the geological layer |
| 91 | + simulated_well = geo_model.solutions.octrees_output[0].last_output_center.custom_grid_values |
| 92 | + thickness = simulated_well.sum() |
| 93 | + pyro.deterministic(r'$\mu_{thickness}$', thickness.detach()) |
| 94 | + y_thickness = pyro.sample(r'$y_{thickness}$', dist.Normal(thickness, 50), obs=y_obs_list) |
| 95 | + |
| 96 | + |
| 97 | + |
| 98 | + # %% |
| 99 | + # Running Prior Sampling and Visualization |
| 100 | + # ---------------------------------------- |
| 101 | + # Prior sampling is an essential step in probabilistic modeling. |
| 102 | + # It helps in understanding the distribution of our prior assumptions before observing any data. |
| 103 | + |
| 104 | + # %% |
| 105 | + # Prepare observation data |
| 106 | + import torch |
| 107 | + y_obs_list = torch.tensor([200, 210, 190]) |
| 108 | + |
| 109 | + # %% |
| 110 | + # Run prior sampling and visualization |
| 111 | + from pyro.infer import Predictive |
| 112 | + import pyro |
| 113 | + import arviz as az |
| 114 | + import matplotlib.pyplot as plt |
| 115 | + |
| 116 | + prior = Predictive(model, num_samples=50)(y_obs_list) |
| 117 | + |
| 118 | + data = az.from_pyro(prior=prior) |
| 119 | + az.plot_trace(data.prior) |
| 120 | + plt.show() |
| 121 | + |
| 122 | + |
| 123 | + from pyro.infer import NUTS |
| 124 | + from pyro.infer import MCMC |
| 125 | + from pyro.infer.autoguide import init_to_mean |
| 126 | + pyro.primitives.enable_validation(is_validate=True) |
| 127 | + nuts_kernel = NUTS( |
| 128 | + model, |
| 129 | + step_size=0.0085, |
| 130 | + adapt_step_size=True, |
| 131 | + target_accept_prob=0.9, |
| 132 | + max_tree_depth=10, |
| 133 | + init_strategy=init_to_mean |
| 134 | + ) |
| 135 | + mcmc = MCMC(nuts_kernel, num_samples=200, warmup_steps=50, disable_validation=False) |
| 136 | + mcmc.run(y_obs_list) |
| 137 | + |
| 138 | + |
| 139 | + posterior_samples = mcmc.get_samples() |
| 140 | + posterior_predictive = Predictive(model, posterior_samples)(y_obs_list) |
| 141 | + data = az.from_pyro(posterior=mcmc, prior=prior, posterior_predictive=posterior_predictive) |
| 142 | + az.plot_trace(data) |
| 143 | + plt.show() |
0 commit comments