Skip to content

pedestrian_complex_environment

Julius Bañgate edited this page Apr 15, 2023 · 3 revisions
Annotation 2023-04-15 185631_ComplexEnvWalk

Path: Plugin models/Pedestrian Skill/models/Complex environment-walk.gaml

/***
* Name: pedestrian_complex_environment
* Author: Patrick Taillandier
* Description: show how to use the pedestrian skill for complex envorinment - require to generate pedestrian paths before - see model "Generate Pedestrian path.gaml" 
* Tags: pedestrian, gis, shapefile, graph, agent_movement, skill, transport
***/

model pedestrian_complex_environment

global {
	
	file wall_shapefile <- file("../includes/walls.shp");
	
	shape_file free_spaces_shape_file <- shape_file("../includes/free spaces.shp");
	shape_file open_area_shape_file <- shape_file("../includes/open area.shp");
	shape_file pedestrian_paths_shape_file <- shape_file("../includes/pedestrian paths.shp");

	
	graph network;
	
	geometry shape <- envelope(wall_shapefile);
	
	bool display_free_space <- false parameter: true;
	bool display_force <- false parameter: true;
	bool display_target <- false parameter: true;
	bool display_circle_min_dist <- true parameter: true;
	
	float P_shoulder_length <- 0.45 parameter: true;
	float P_proba_detour <- 0.5 parameter: true ;
	bool P_avoid_other <- true parameter: true ;
	float P_obstacle_consideration_distance <- 3.0 parameter: true ;
	float P_pedestrian_consideration_distance <- 3.0 parameter: true ;
	float P_tolerance_target <- 0.1 parameter: true;
	bool P_use_geometry_target <- true parameter: true;
	
	
	string P_model_type <- "simple" among: ["simple", "advanced"] parameter: true ; 
	
	float P_A_pedestrian_SFM_advanced parameter: true <- 0.16 category: "SFM advanced" ;
	float P_A_obstacles_SFM_advanced parameter: true <- 1.9 category: "SFM advanced" ;
	float P_B_pedestrian_SFM_advanced parameter: true <- 0.1 category: "SFM advanced" ;
	float P_B_obstacles_SFM_advanced parameter: true <- 1.0 category: "SFM advanced" ;
	float P_relaxion_SFM_advanced  parameter: true <- 0.5 category: "SFM advanced" ;
	float P_gama_SFM_advanced parameter: true <- 0.35 category: "SFM advanced" ;
	float P_lambda_SFM_advanced <- 0.1 parameter: true category: "SFM advanced" ;
	float P_minimal_distance_advanced <- 0.25 parameter: true category: "SFM advanced" ;
	
	float P_n_prime_SFM_simple parameter: true <- 3.0 category: "SFM simple" ;
	float P_n_SFM_simple parameter: true <- 2.0 category: "SFM simple" ;
	float P_lambda_SFM_simple <- 2.0 parameter: true category: "SFM simple" ;
	float P_gama_SFM_simple parameter: true <- 0.35 category: "SFM simple" ;
	float P_relaxion_SFM_simple parameter: true <- 0.54 category: "SFM simple" ;
	float P_A_pedestrian_SFM_simple parameter: true <-4.5category: "SFM simple" ;
	
	float step <- 0.1;
	int nb_people <- 250;

	geometry open_area ;
	
	init {
		open_area <- first(open_area_shape_file.contents);
		create wall from:wall_shapefile;
		create pedestrian_path from: pedestrian_paths_shape_file {
			list<geometry> fs <- free_spaces_shape_file overlapping self;
			free_space <- fs first_with (each covers shape); 
		}
		

		network <- as_edge_graph(pedestrian_path);
		
		ask pedestrian_path {
			do build_intersection_areas pedestrian_graph: network;
		}
	
		create people number:nb_people{
			location <- any_location_in(one_of(open_area));
			obstacle_consideration_distance <-P_obstacle_consideration_distance;
			pedestrian_consideration_distance <-P_pedestrian_consideration_distance;
			shoulder_length <- P_shoulder_length;
			avoid_other <- P_avoid_other;
			proba_detour <- P_proba_detour;
			
			use_geometry_waypoint <- P_use_geometry_target;
			tolerance_waypoint<- P_tolerance_target;
			pedestrian_species <- [people];
			obstacle_species<-[wall];
			
			pedestrian_model <- P_model_type;
			
		
			if (pedestrian_model = "simple") {
				A_pedestrians_SFM <- P_A_pedestrian_SFM_simple;
				relaxion_SFM <- P_relaxion_SFM_simple;
				gama_SFM <- P_gama_SFM_simple;
				lambda_SFM <- P_lambda_SFM_simple;
				n_prime_SFM <- P_n_prime_SFM_simple;
				n_SFM <- P_n_SFM_simple;
			} else {
				A_pedestrians_SFM <- P_A_pedestrian_SFM_advanced;
				A_obstacles_SFM <- P_A_obstacles_SFM_advanced;
				B_pedestrians_SFM <- P_B_pedestrian_SFM_advanced;
				B_obstacles_SFM <- P_B_obstacles_SFM_advanced;
				relaxion_SFM <- P_relaxion_SFM_advanced;
				gama_SFM <- P_gama_SFM_advanced;
				lambda_SFM <- P_lambda_SFM_advanced;
				minimal_distance <- P_minimal_distance_advanced;
			
			}
		}	
	}
	
	reflex stop when: empty(people) {
		do pause;
	}
	
}

species pedestrian_path skills: [pedestrian_road]{
	aspect default { 
		draw shape  color: #gray;
	}
	aspect free_area_aspect {
		if(display_free_space and free_space != nil) {
			draw free_space color: #lightpink border: #black;
		}
		
	}
}

species wall {
	geometry free_space;
	float high <- rnd(10.0, 20.0);
	
	aspect demo {
		draw shape border: #black depth: high texture: ["../includes/top.png","../includes/texture5.jpg"];
	}
	
	aspect default {
		draw shape + (P_shoulder_length/2.0) color: #gray border: #black;
	}
}

species people skills: [pedestrian]{
	rgb color <- rnd_color(255);
	float speed <- gauss(5,1.5) #km/#h min: 2 #km/#h;

	reflex move  {
		if (final_waypoint = nil) {
			do compute_virtual_path pedestrian_graph:network target: any_location_in(open_area) ;
		}
		do walk ;
	}	
	
	aspect default {
		
		if display_circle_min_dist and minimal_distance > 0 {
			draw circle(minimal_distance).contour color: color;
		}
		
		draw triangle(shoulder_length) color: color rotate: heading + 90.0;
		
		if display_target and current_waypoint != nil {
			draw line([location,current_waypoint]) color: color;
		}
		if  display_force {
			loop op over: forces.keys {
				if (species(agent(op)) = wall ) {
					draw line([location, location + point(forces[op])]) color: #red end_arrow: 0.1;
				}
				else if ((agent(op)) = self ) {
					draw line([location, location + point(forces[op])]) color: #blue end_arrow: 0.1;
				} 
				else {
					draw line([location, location + point(forces[op])]) color: #green end_arrow: 0.1;
				}
			}
		}	
	}
}


experiment normal_sim type: gui {
	float minimum_cycle_duration <- 0.02;
		output {
		display map type: 3d{
			species wall refresh: false;
			species pedestrian_path aspect:free_area_aspect transparency: 0.5 ;
			species pedestrian_path refresh: false;
			species people;
		}
	}
}
  1. What's new (Changelog)
  1. Installation and Launching
    1. Installation
    2. Launching GAMA
    3. Updating GAMA
    4. Installing Plugins
  2. Workspace, Projects and Models
    1. Navigating in the Workspace
    2. Changing Workspace
    3. Importing Models
  3. Editing Models
    1. GAML Editor (Generalities)
    2. GAML Editor Tools
    3. Validation of Models
  4. Running Experiments
    1. Launching Experiments
    2. Experiments User interface
    3. Controls of experiments
    4. Parameters view
    5. Inspectors and monitors
    6. Displays
    7. Batch Specific UI
    8. Errors View
  5. Running Headless
    1. Headless Batch
    2. Headless Server
    3. Headless Legacy
  6. Preferences
  7. Troubleshooting
  1. Introduction
    1. Start with GAML
    2. Organization of a Model
    3. Basic programming concepts in GAML
  2. Manipulate basic Species
  3. Global Species
    1. Regular Species
    2. Defining Actions and Behaviors
    3. Interaction between Agents
    4. Attaching Skills
    5. Inheritance
  4. Defining Advanced Species
    1. Grid Species
    2. Graph Species
    3. Mirror Species
    4. Multi-Level Architecture
  5. Defining GUI Experiment
    1. Defining Parameters
    2. Defining Displays Generalities
    3. Defining 3D Displays
    4. Defining Charts
    5. Defining Monitors and Inspectors
    6. Defining Export files
    7. Defining User Interaction
  6. Exploring Models
    1. Run Several Simulations
    2. Batch Experiments
    3. Exploration Methods
  7. Optimizing Model Section
    1. Runtime Concepts
    2. Optimizing Models
  8. Multi-Paradigm Modeling
    1. Control Architecture
    2. Defining Differential Equations
  1. Manipulate OSM Data
  2. Diffusion
  3. Using Database
  4. Using FIPA ACL
  5. Using BDI with BEN
  6. Using Driving Skill
  7. Manipulate dates
  8. Manipulate lights
  9. Using comodel
  10. Save and restore Simulations
  11. Using network
  12. Headless mode
  13. Using Headless
  14. Writing Unit Tests
  15. Ensure model's reproducibility
  16. Going further with extensions
    1. Calling R
    2. Using Graphical Editor
    3. Using Git from GAMA
  1. Built-in Species
  2. Built-in Skills
  3. Built-in Architecture
  4. Statements
  5. Data Type
  6. File Type
  7. Expressions
    1. Literals
    2. Units and Constants
    3. Pseudo Variables
    4. Variables And Attributes
    5. Operators [A-A]
    6. Operators [B-C]
    7. Operators [D-H]
    8. Operators [I-M]
    9. Operators [N-R]
    10. Operators [S-Z]
  8. Exhaustive list of GAMA Keywords
  1. Installing the GIT version
  2. Developing Extensions
    1. Developing Plugins
    2. Developing Skills
    3. Developing Statements
    4. Developing Operators
    5. Developing Types
    6. Developing Species
    7. Developing Control Architectures
    8. Index of annotations
  3. Introduction to GAMA Java API
    1. Architecture of GAMA
    2. IScope
  4. Using GAMA flags
  5. Creating a release of GAMA
  6. Documentation generation

  1. Predator Prey
  2. Road Traffic
  3. 3D Tutorial
  4. Incremental Model
  5. Luneray's flu
  6. BDI Agents

  1. Team
  2. Projects using GAMA
  3. Scientific References
  4. Training Sessions

Resources

  1. Videos
  2. Conferences
  3. Code Examples
  4. Pedagogical materials
Clone this wiki locally