Skip to content

PredatorPrey_step9

benoitgaudou edited this page Sep 20, 2021 · 11 revisions

9. Stopping condition

This 9th step illustrates how to use the pause action to stop a simulation.

Formulation

  • Addition of a stopping condition for the simulation: when there is no more prey or predator agents, the simulation stops

Model Definition

We add a new reflex that stops the simulation if the number of preys or the number of predators is zero.

global {
    ...
    reflex stop_simulation when: (nb_preys = 0) or (nb_predators = 0) {
        do pause ;
    } 
}

Complete Model

model prey_predator

global {
    int nb_preys_init <- 200;
    int nb_predators_init <- 20;
    float prey_max_energy <- 1.0;
    float prey_max_transfer <- 0.1;
    float prey_energy_consum <- 0.05;
    float predator_max_energy <- 1.0;
    float predator_energy_transfer <- 0.5;
    float predator_energy_consum <- 0.02;
    float prey_proba_reproduce <- 0.01;
    int prey_nb_max_offsprings <- 5;
    float prey_energy_reproduce <- 0.5;
    float predator_proba_reproduce <- 0.01;
    int predator_nb_max_offsprings <- 3;
    float predator_energy_reproduce <- 0.5;
    int nb_preys -> {length(prey)};
    int nb_predators -> {length(predator)};

    init {
        create prey number: nb_preys_init;
        create predator number: nb_predators_init;
    }
    
    reflex stop_simulation when: (nb_preys = 0) or (nb_predators = 0) {
        do pause;
    } 
}

species generic_species {
    float size <- 1.0;
    rgb color;
    float max_energy;
    float max_transfer;
    float energy_consum;
    float proba_reproduce;
    int nb_max_offsprings;
    float energy_reproduce;
    image_file my_icon;
    vegetation_cell my_cell <- one_of(vegetation_cell);
    float energy <- rnd(max_energy) update: energy - energy_consum max: max_energy;

    init {
        location <- my_cell.location;
    }

    reflex basic_move {
        my_cell <- choose_cell();
        location <- my_cell.location;
    }

    reflex eat {
        energy <- energy + energy_from_eat();        
    }

    reflex die when: energy <= 0 {
        do die;
    }

    reflex reproduce when: (energy >= energy_reproduce) and (flip(proba_reproduce)) {
        int nb_offsprings <- rnd(1, nb_max_offsprings);
        create species(self) number: nb_offsprings {
            my_cell <- myself.my_cell;
            location <- my_cell.location;
            energy <- myself.energy / nb_offsprings;
        }

        energy <- energy / nb_offsprings;
    }

    float energy_from_eat {
        return 0.0;
    }

    vegetation_cell choose_cell {
        return nil;
    }

    aspect base {
        draw circle(size) color: color;
    }

    aspect icon {
        draw my_icon size: 2 * size;
    }

    aspect info {
        draw square(size) color: color;
        draw string(energy with_precision 2) size: 3 color: #black;
    }
}

species prey parent: generic_species {
    rgb color <- #blue;
    float max_energy <- prey_max_energy;
    float max_transfer <- prey_max_transfer;
    float energy_consum <- prey_energy_consum;
    float proba_reproduce <- prey_proba_reproduce;
    int nb_max_offsprings <- prey_nb_max_offsprings;
    float energy_reproduce <- prey_energy_reproduce;
    image_file my_icon <- image_file("../includes/data/sheep.png");

    float energy_from_eat {
        float energy_transfer <- 0.0;
        if(my_cell.food > 0) {
            energy_transfer <- min([max_transfer, my_cell.food]);
            my_cell.food <- my_cell.food - energy_transfer;
        }             
        return energy_transfer;
    }

    vegetation_cell choose_cell {
        return (my_cell.neighbors2) with_max_of (each.food);
    }
}

species predator parent: generic_species {
    rgb color <- #red;
    float max_energy <- predator_max_energy;
    float energy_transfer <- predator_energy_transfer;
    float energy_consum <- predator_energy_consum;
    float proba_reproduce <- predator_proba_reproduce;
    int nb_max_offsprings <- predator_nb_max_offsprings;
    float energy_reproduce <- predator_energy_reproduce;
    image_file my_icon <- image_file("../includes/data/wolf.png");

    float energy_from_eat {
        list<prey> reachable_preys <- prey inside (my_cell);
        if(! empty(reachable_preys)) {
            ask one_of (reachable_preys) {
                do die;
            }
            return energy_transfer;
        }
        return 0.0;
    }

    vegetation_cell choose_cell {
        vegetation_cell my_cell_tmp <- shuffle(my_cell.neighbors2) first_with (!(empty(prey inside (each))));
        if my_cell_tmp != nil {
            return my_cell_tmp;
        } else {
            return one_of(my_cell.neighbors2);
        }
    }
}

grid vegetation_cell width: 50 height: 50 neighbors: 4 {
    float max_food <- 1.0;
    float food_prod <- rnd(0.01);
    float food <- rnd(1.0) max: max_food update: food + food_prod;
    rgb color <- rgb(int(255 * (1 - food)), 255, int(255 * (1 - food))) update: rgb(int(255 * (1 - food)), 255, int(255 * (1 - food)));
    list<vegetation_cell> neighbors2 <- (self neighbors_at 2);
}

experiment prey_predator type: gui {
    parameter "Initial number of preys: " var: nb_preys_init min: 0 max: 1000 category: "Prey";
    parameter "Prey max energy: " var: prey_max_energy category: "Prey";
    parameter "Prey max transfer: " var: prey_max_transfer category: "Prey";
    parameter "Prey energy consumption: " var: prey_energy_consum category: "Prey";
    parameter "Initial number of predators: " var: nb_predators_init min: 0 max: 200 category: "Predator";
    parameter "Predator max energy: " var: predator_max_energy category: "Predator";
    parameter "Predator energy transfer: " var: predator_energy_transfer category: "Predator";
    parameter "Predator energy consumption: " var: predator_energy_consum category: "Predator";
    parameter 'Prey probability reproduce: ' var: prey_proba_reproduce category: 'Prey';
    parameter 'Prey nb max offsprings: ' var: prey_nb_max_offsprings category: 'Prey';
    parameter 'Prey energy reproduce: ' var: prey_energy_reproduce category: 'Prey';
    parameter 'Predator probability reproduce: ' var: predator_proba_reproduce category: 'Predator';
    parameter 'Predator nb max offsprings: ' var: predator_nb_max_offsprings category: 'Predator';
    parameter 'Predator energy reproduce: ' var: predator_energy_reproduce category: 'Predator';

    output {
        display main_display {
            grid vegetation_cell border: #black;
            species prey aspect: icon;
            species predator aspect: icon;
        }

        display info_display {
            grid vegetation_cell border: #black;
            species prey aspect: info;
            species predator aspect: info;
        }

        monitor "Number of preys" value: nb_preys;
        monitor "Number of predators" value: nb_predators;
    }
}
  1. What's new (Changelog)
  1. Installation and Launching
    1. Installation
    2. Launching GAMA
    3. Updating GAMA
    4. Installing Plugins
  2. Workspace, Projects and Models
    1. Navigating in the Workspace
    2. Changing Workspace
    3. Importing Models
  3. Editing Models
    1. GAML Editor (Generalities)
    2. GAML Editor Tools
    3. Validation of Models
  4. Running Experiments
    1. Launching Experiments
    2. Experiments User interface
    3. Controls of experiments
    4. Parameters view
    5. Inspectors and monitors
    6. Displays
    7. Batch Specific UI
    8. Errors View
  5. Running Headless
    1. Headless Batch
    2. Headless Server
    3. Headless Legacy
  6. Preferences
  7. Troubleshooting
  1. Introduction
    1. Start with GAML
    2. Organization of a Model
    3. Basic programming concepts in GAML
  2. Manipulate basic Species
  3. Global Species
    1. Regular Species
    2. Defining Actions and Behaviors
    3. Interaction between Agents
    4. Attaching Skills
    5. Inheritance
  4. Defining Advanced Species
    1. Grid Species
    2. Graph Species
    3. Mirror Species
    4. Multi-Level Architecture
  5. Defining GUI Experiment
    1. Defining Parameters
    2. Defining Displays Generalities
    3. Defining 3D Displays
    4. Defining Charts
    5. Defining Monitors and Inspectors
    6. Defining Export files
    7. Defining User Interaction
  6. Exploring Models
    1. Run Several Simulations
    2. Batch Experiments
    3. Exploration Methods
  7. Optimizing Model Section
    1. Runtime Concepts
    2. Optimizing Models
  8. Multi-Paradigm Modeling
    1. Control Architecture
    2. Defining Differential Equations
  1. Manipulate OSM Data
  2. Diffusion
  3. Using Database
  4. Using FIPA ACL
  5. Using BDI with BEN
  6. Using Driving Skill
  7. Manipulate dates
  8. Manipulate lights
  9. Using comodel
  10. Save and restore Simulations
  11. Using network
  12. Headless mode
  13. Using Headless
  14. Writing Unit Tests
  15. Ensure model's reproducibility
  16. Going further with extensions
    1. Calling R
    2. Using Graphical Editor
    3. Using Git from GAMA
  1. Built-in Species
  2. Built-in Skills
  3. Built-in Architecture
  4. Statements
  5. Data Type
  6. File Type
  7. Expressions
    1. Literals
    2. Units and Constants
    3. Pseudo Variables
    4. Variables And Attributes
    5. Operators [A-A]
    6. Operators [B-C]
    7. Operators [D-H]
    8. Operators [I-M]
    9. Operators [N-R]
    10. Operators [S-Z]
  8. Exhaustive list of GAMA Keywords
  1. Installing the GIT version
  2. Developing Extensions
    1. Developing Plugins
    2. Developing Skills
    3. Developing Statements
    4. Developing Operators
    5. Developing Types
    6. Developing Species
    7. Developing Control Architectures
    8. Index of annotations
  3. Introduction to GAMA Java API
    1. Architecture of GAMA
    2. IScope
  4. Using GAMA flags
  5. Creating a release of GAMA
  6. Documentation generation

  1. Predator Prey
  2. Road Traffic
  3. 3D Tutorial
  4. Incremental Model
  5. Luneray's flu
  6. BDI Agents

  1. Team
  2. Projects using GAMA
  3. Scientific References
  4. Training Sessions

Resources

  1. Videos
  2. Conferences
  3. Code Examples
  4. Pedagogical materials
Clone this wiki locally