-
Notifications
You must be signed in to change notification settings - Fork 99
PredatorPrey_step10
This 10th step Illustrates how to define charts.
- Adding a new display to visualize:
- One chart representing the evolution of the quantity of prey and predator agents over the time
- Two histograms representing the energy distribution of the prey and predator agents
GAMA can display various chart types:
- Time series
- Pie charts
- Histograms
A chart must be defined in a display : it behaves exactly like any other layer.
Definition of a chart:
chart chart_name type: chart_type {
[data]
}
The data to draw are defined inside the chart block as follow:
data data_legend value: data_value
We add a new display called Population_information that refreshes every 5 simulation steps. Inside this display, we define 3 charts: one of type series (i.e. time series chart), two of type histogram :
-
"Species evolution"; background : white; size : {1, 0.5}; position : {0, 0}
- data1: number_of_preys; color : blue
- data2: number_of_predator; color : red
-
"Prey Energy Distribution"; background : lightGray; size : {0.5, 0.5}; position : {0, 0.5}
- data "]0;0.25]" : number of preys with (each.energy <= 0.25) ;
- data "]0.25;0.5]" number of preys with ((each.energy > 0.25) and (each.energy <= 0.5)) ;
- data "]0.5;0.75]" number of preys with ((each.energy > 0.5) and (each.energy <= 0.75)) ;
- data "]0.75;1]" number of preys with (each.energy > 0.75) ;
-
"Predator Energy Distribution"; background : lightGray; size : {0.5, 0.5}; position : {0.5, 0.5}
- data "]0;0.25]" : number of predators with (each.energy <= 0.25) ;
- data "]0.25;0.5]" number of predators with ((each.energy > 0.25) and (each.energy <= 0.5)) ;
- data "]0.5;0.75]" number of predators with ((each.energy > 0.5) and (each.energy <= 0.75)) ;
- data "]0.75;1]" number of predators with (each.energy > 0.75) ;
To evaluate the value of the data of the two histogram, we use the operator list count condition" that returns the number of elements oflistfor which the condition is true.
display Population_information refresh:every(5#cycles) {
chart "Species evolution" type: series size: {1,0.5} position: {0, 0} {
data "number_of_preys" value: nb_preys color: #blue ;
data "number_of_predator" value: nb_predators color: #red ;
}
chart "Prey Energy Distribution" type: histogram background: rgb("white") size: {0.5,0.5} position: {0, 0.5} {
data "]0;0.25]" value: prey count (each.energy <= 0.25) color:#blue;
data "]0.25;0.5]" value: prey count ((each.energy > 0.25) and (each.energy <= 0.5)) color:#blue;
data "]0.5;0.75]" value: prey count ((each.energy > 0.5) and (each.energy <= 0.75)) color:#blue;
data "]0.75;1]" value: prey count (each.energy > 0.75) color:#blue;
}
chart "Predator Energy Distribution" type: histogram background: rgb("white") size: {0.5,0.5} position: {0.5, 0.5} {
data "]0;0.25]" value: predator count (each.energy <= 0.25) color: #red ;
data "]0.25;0.5]" value: predator count ((each.energy > 0.25) and (each.energy <= 0.5)) color: #red ;
data "]0.5;0.75]" value: predator count ((each.energy > 0.5) and (each.energy <= 0.75)) color: #red ;
data "]0.75;1]" value: predator count (each.energy > 0.75) color: #red;
}
}
model prey_predator
global {
int nb_preys_init <- 200;
int nb_predators_init <- 20;
float prey_max_energy <- 1.0;
float prey_max_transfert <- 0.1 ;
float prey_energy_consum <- 0.05;
float predator_max_energy <- 1.0;
float predator_energy_transfert <- 0.5;
float predator_energy_consum <- 0.02;
float prey_proba_reproduce <- 0.01;
int prey_nb_max_offsprings <- 5;
float prey_energy_reproduce <- 0.5;
float predator_proba_reproduce <- 0.01;
int predator_nb_max_offsprings <- 3;
float predator_energy_reproduce <- 0.5;
int nb_preys -> {length (prey)};
int nb_predators -> {length (predator)};
init {
create prey number: nb_preys_init ;
create predator number: nb_predators_init ;
}
reflex stop_simulation when: (nb_preys = 0) or (nb_predators = 0) {
do pause ;
}
}
species generic_species {
float size <- 1.0;
rgb color ;
float max_energy;
float max_transfert;
float energy_consum;
float proba_reproduce ;
float nb_max_offsprings;
float energy_reproduce;
image_file my_icon;
vegetation_cell myCell <- one_of (vegetation_cell) ;
float energy <- (rnd(1000) / 1000) * max_energy update: energy - energy_consum max: max_energy ;
init {
location <- myCell.location;
}
reflex basic_move {
myCell <- choose_cell();
location <- myCell.location;
}
vegetation_cell choose_cell {
return nil;
}
reflex die when: energy <= 0 {
do die ;
}
reflex reproduce when: (energy >= energy_reproduce) and (flip(proba_reproduce)) {
int nb_offsprings <- 1 + rnd(nb_max_offsprings -1);
create species(self) number: nb_offsprings {
myCell <- myself.myCell ;
location <- myCell.location ;
energy <- myself.energy / nb_offsprings ;
}
energy <- energy / nb_offsprings ;
}
aspect base {
draw circle(size) color: color ;
}
aspect icon {
draw my_icon size: 2 * size ;
}
aspect info {
draw square(size) color: color ;
draw string(energy with_precision 2) size: 3 color: #black ;
}
}
species prey parent: generic_species {
rgb color <- #blue;
float max_energy <- prey_max_energy ;
float max_transfert <- prey_max_transfert ;
float energy_consum <- prey_energy_consum ;
float proba_reproduce <- prey_proba_reproduce ;
int nb_max_offsprings <- prey_nb_max_offsprings ;
float energy_reproduce <- prey_energy_reproduce ;
file my_icon <- file("../images/predator_prey_sheep.png") ;
reflex eat when: myCell.food > 0 {
float energy_transfert <- min([max_transfert, myCell.food]) ;
myCell.food <- myCell.food - energy_transfert ;
energy <- energy + energy_transfert ;
}
vegetation_cell choose_cell {
return (myCell.neighbors) with_max_of (each.food);
}
}
species predator parent: generic_species {
rgb color <- #red ;
float max_energy <- predator_max_energy ;
float energy_transfert <- predator_energy_transfert ;
float energy_consum <- predator_energy_consum ;
list<prey> reachable_preys update: prey inside (myCell);
float proba_reproduce <- predator_proba_reproduce ;
int nb_max_offsprings <- predator_nb_max_offsprings ;
float energy_reproduce <- predator_energy_reproduce ;
file my_icon <- file("../images/predator_prey_wolf.png") ;
reflex eat when: ! empty(reachable_preys) {
ask one_of (reachable_preys) {
do die ;
}
energy <- energy + energy_transfert ;
}
vegetation_cell choose_cell {
vegetation_cell myCell_tmp <- shuffle(myCell.neighbors) first_with (!(empty (prey inside (each))));
if myCell_tmp != nil {
return myCell_tmp;
} else {
return one_of (myCell.neighbors);
}
}
}
grid vegetation_cell width: 50 height: 50 neighbors: 4 {
float maxFood <- 1.0 ;
float foodProd <- (rnd(1000) / 1000) * 0.01 ;
float food <- (rnd(1000) / 1000) max: maxFood update: food + foodProd ;
rgb color <- rgb(int(255 * (1 - food)), 255, int(255 * (1 - food))) update: rgb(int(255 * (1 - food)), 255, int(255 *(1 - food))) ;
list<vegetation_cell> neighbors <- (self neighbors_at 2);
}
experiment prey_predator type: gui {
parameter "Initial number of preys: " var: nb_preys_init min: 0 max: 1000 category: "Prey" ;
parameter "Prey max energy: " var: prey_max_energy category: "Prey" ;
parameter "Prey max transfert: " var: prey_max_transfert category: "Prey" ;
parameter "Prey energy consumption: " var: prey_energy_consum category: "Prey" ;
parameter "Initial number of predators: " var: nb_predators_init min: 0 max: 200 category: "Predator" ;
parameter "Predator max energy: " var: predator_max_energy category: "Predator" ;
parameter "Predator energy transfert: " var: predator_energy_transfert category: "Predator" ;
parameter "Predator energy consumption: " var: predator_energy_consum category: "Predator" ;
parameter 'Prey probability reproduce: ' var: prey_proba_reproduce category: 'Prey' ;
parameter 'Prey nb max offsprings: ' var: prey_nb_max_offsprings category: 'Prey' ;
parameter 'Prey energy reproduce: ' var: prey_energy_reproduce category: 'Prey' ;
parameter 'Predator probability reproduce: ' var: predator_proba_reproduce category: 'Predator' ;
parameter 'Predator nb max offsprings: ' var: predator_nb_max_offsprings category: 'Predator' ;
parameter 'Predator energy reproduce: ' var: predator_energy_reproduce category: 'Predator' ;
output {
display main_display {
grid vegetation_cell lines: #black ;
species prey aspect: icon ;
species predator aspect: icon ;
}
display info_display {
grid vegetation_cell lines: #black ;
species prey aspect: info ;
species predator aspect: info ;
}
display Population_information refresh:every(5#cycles) {
chart "Species evolution" type: series size: {1,0.5} position: {0, 0} {
data "number_of_preys" value: nb_preys color: #blue ;
data "number_of_predator" value: nb_predators color: #red ;
}
chart "Prey Energy Distribution" type: histogram background: rgb("lightGray") size: {0.5,0.5} position: {0, 0.5} {
data "]0;0.25]" value: prey count (each.energy <= 0.25) color:#blue;
data "]0.25;0.5]" value: prey count ((each.energy > 0.25) and (each.energy <= 0.5)) color:#blue;
data "]0.5;0.75]" value: prey count ((each.energy > 0.5) and (each.energy <= 0.75)) color:#blue;
data "]0.75;1]" value: prey count (each.energy > 0.75) color:#blue;
}
chart "Predator Energy Distribution" type: histogram background: rgb("lightGray") size: {0.5,0.5} position: {0.5, 0.5} {
data "]0;0.25]" value: predator count (each.energy <= 0.25) color: #red ;
data "]0.25;0.5]" value: predator count ((each.energy > 0.25) and (each.energy <= 0.5)) color: #red ;
data "]0.5;0.75]" value: predator count ((each.energy > 0.5) and (each.energy <= 0.75)) color: #red ;
data "]0.75;1]" value: predator count (each.energy > 0.75) color: #red;
}
}
monitor "Number of preys" value: nb_preys;
monitor "Number of predators" value: nb_predators;
}
}
- Installation and Launching
- Workspace, Projects and Models
- Editing Models
- Running Experiments
- Running Headless
- Preferences
- Troubleshooting
- Introduction
- Manipulate basic Species
- Global Species
- Defining Advanced Species
- Defining GUI Experiment
- Exploring Models
- Optimizing Model Section
- Multi-Paradigm Modeling
- Manipulate OSM Data
- Diffusion
- Using Database
- Using FIPA ACL
- Using BDI with BEN
- Using Driving Skill
- Manipulate dates
- Manipulate lights
- Using comodel
- Save and restore Simulations
- Using network
- Headless mode
- Using Headless
- Writing Unit Tests
- Ensure model's reproducibility
- Going further with extensions
- Built-in Species
- Built-in Skills
- Built-in Architecture
- Statements
- Data Type
- File Type
- Expressions
- Exhaustive list of GAMA Keywords
- Installing the GIT version
- Developing Extensions
- Introduction to GAMA Java API
- Using GAMA flags
- Creating a release of GAMA
- Documentation generation