@@ -4302,6 +4302,12 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
4302
4302
class Mamba2Model (TextModel ):
4303
4303
model_arch = gguf .MODEL_ARCH .MAMBA2
4304
4304
4305
+ def __init__ (self , * args , ** kwargs ):
4306
+ super ().__init__ (* args , ** kwargs )
4307
+ self .d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4308
+ self .d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * d_model
4309
+ self .n_group = self .hparams .get ("n_groups" , 1 )
4310
+
4305
4311
def set_vocab (self ):
4306
4312
vocab_size = self .hparams ["vocab_size" ]
4307
4313
# Round vocab size to next multiple of 16
@@ -4371,10 +4377,7 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
4371
4377
# (D is also unsqueezed, but for more straightforward broadcast internally)
4372
4378
data_torch = data_torch .reshape ((* data_torch .shape , 1 ))
4373
4379
elif self .match_model_tensor_name (new_name , gguf .MODEL_TENSOR .SSM_NORM , bid ):
4374
- d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4375
- d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * d_model
4376
- n_group = self .hparams .get ("n_groups" , 1 )
4377
- data_torch = data_torch .reshape ((n_group , d_inner // n_group ))
4380
+ data_torch = data_torch .reshape ((self .n_group , self .d_inner // self .n_group ))
4378
4381
4379
4382
if name .endswith (".A_log" ):
4380
4383
logger .debug ("A_log --> A ==> " + new_name )
@@ -4383,6 +4386,107 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
4383
4386
yield (new_name , data_torch )
4384
4387
4385
4388
4389
+ @ModelBase .register ("BambaForCausalLM" )
4390
+ class BambaModel (Mamba2Model ):
4391
+ """Bamba is a hybrid SSM + Attention model that uses Mamba2 SSM layers"""
4392
+ model_arch = gguf .MODEL_ARCH .BAMBA
4393
+ undo_permute = True
4394
+
4395
+ def __init__ (self , * args , ** kwargs ):
4396
+
4397
+ # Hybrid mamba models use a prefix for the mamba-specific params.
4398
+ # TODO: Extend this if the prefix(es) need to be configurable
4399
+ self .hparam_prefixes = ["mamba" ]
4400
+
4401
+ super ().__init__ (* args , ** kwargs )
4402
+
4403
+ # Use Llama conversion for attention
4404
+ self ._transformer_model_class : type [TextModel ] = LlamaModel
4405
+
4406
+ # Lists of which layers use ssm vs attention
4407
+ self ._attn_layers = self .hparams .get ("attn_layer_indices" , [])
4408
+ if not self ._attn_layers :
4409
+ attn_period = self .hparams .get ("attn_layer_period" )
4410
+ assert attn_period , "Didn't find attn_layer_indices or attn_layer_period"
4411
+ attn_offset = self .hparams .get ("attn_layer_offset" )
4412
+ assert attn_offset is not None , "No attention layer offset set with attn_layer_period"
4413
+ self ._attn_layers = [
4414
+ i for i in range (self .block_count )
4415
+ if i % attn_period == attn_offset
4416
+ ]
4417
+ self ._ssm_layers = [
4418
+ i for i in range (self .block_count )
4419
+ if i not in self ._attn_layers
4420
+ ]
4421
+
4422
+ # n_group and d_inner are used during reshape_tensors for mamaba2
4423
+ self .d_model = self .find_hparam (["hidden_size" , "d_model" ])
4424
+ self .n_group = self .find_hparam (["n_groups" ])
4425
+ self .d_inner = self .find_hparam (["expand" ]) * self .d_model
4426
+
4427
+ def find_hparam (self , keys : Iterable [str ], * args , ** kwargs ) -> Any :
4428
+ prefixed = []
4429
+ for pfx in self .hparam_prefixes :
4430
+ prefixed .extend (
4431
+ "_" .join ([pfx , k ])
4432
+ for k in keys
4433
+ )
4434
+ keys = list (keys ) + prefixed
4435
+ return super ().find_hparam (keys , * args , ** kwargs )
4436
+
4437
+ def set_gguf_parameters (self ):
4438
+
4439
+ ## General Params ##
4440
+ self .gguf_writer .add_embedding_length (self .d_model )
4441
+ self .gguf_writer .add_block_count (self .block_count )
4442
+ self .gguf_writer .add_context_length (self .hparams .get ("max_position_embeddings" , 0 ))
4443
+ self .gguf_writer .add_vocab_size (self .hparams ["vocab_size" ])
4444
+ self .gguf_writer .add_feed_forward_length (self .hparams ["intermediate_size" ])
4445
+
4446
+ ## Mamba mixer params ##
4447
+ self .gguf_writer .add_ssm_conv_kernel (self .find_hparam (["conv_kernel" , "d_conv" ]))
4448
+ self .gguf_writer .add_ssm_state_size (self .find_hparam (["state_size" , "d_state" ]))
4449
+ self .gguf_writer .add_ssm_group_count (self .n_group )
4450
+ self .gguf_writer .add_ssm_inner_size (self .d_inner )
4451
+ # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
4452
+ # in llama.cpp
4453
+ self .gguf_writer .add_ssm_time_step_rank (self .find_hparam (["n_heads" ]))
4454
+
4455
+ ## Attention params ##
4456
+ self .gguf_writer .add_attn_layer_indices (self ._attn_layers )
4457
+ self .gguf_writer .add_rope_dimension_count (self .hparams ["attn_rotary_emb" ])
4458
+ self .gguf_writer .add_head_count (self .hparams ["num_attention_heads" ])
4459
+ self .gguf_writer .add_head_count_kv (self .find_hparam (["num_key_value_heads" , "n_head_kv" ]))
4460
+
4461
+ ## Feed Forward Params ##
4462
+ self .gguf_writer .add_layer_norm_rms_eps (
4463
+ self .find_hparam (["layer_norm_epsilon" , "rms_norm_eps" ], optional = True ) or 1e-5
4464
+ )
4465
+
4466
+ ## Validation ##
4467
+ d_head = self .find_hparam (["d_head" ], optional = True ) or 64
4468
+ assert self .hparams .get ("hidden_act" ) in [None , "silu" ], "Only SILU activation supported"
4469
+ assert self .d_inner % d_head == 0 , f"SSM inner size { self .d_inner } not a multiple of head dim { d_head } "
4470
+
4471
+ def modify_tensors (
4472
+ self , data_torch : Tensor , name : str , bid : int | None
4473
+ ) -> Iterable [tuple [str , Tensor ]]:
4474
+
4475
+ # Determine whether this is a mamaba layer or an attention layer
4476
+ if bid in self ._ssm_layers :
4477
+ for mamba_new_name , data_torch in super ().modify_tensors (
4478
+ data_torch , name , bid
4479
+ ):
4480
+ yield mamba_new_name , data_torch
4481
+ elif bid in self ._attn_layers :
4482
+ for llama_new_name , data_torch in self ._transformer_model_class .modify_tensors (
4483
+ self , data_torch , name , bid
4484
+ ):
4485
+ yield llama_new_name , data_torch
4486
+ else :
4487
+ yield self .map_tensor_name (name ), data_torch
4488
+
4489
+
4386
4490
@ModelBase .register ("CohereForCausalLM" )
4387
4491
class CommandR2Model (TextModel ):
4388
4492
model_arch = gguf .MODEL_ARCH .COMMAND_R
0 commit comments