@@ -4623,6 +4623,14 @@ def set_gguf_parameters(self):
4623
4623
class MambaModel (TextModel ):
4624
4624
model_arch = gguf .MODEL_ARCH .MAMBA
4625
4625
4626
+ def __init__ (self , dir_model : Path , * args , ** kwargs ):
4627
+ # Avoid using AutoConfig for hparams
4628
+ hparams = kwargs .pop ("hparams" , None )
4629
+ if hparams is None :
4630
+ with open (dir_model / "config.json" , "r" , encoding = "utf-8" ) as f :
4631
+ hparams = json .load (f )
4632
+ super ().__init__ (dir_model , * args , hparams = hparams , ** kwargs )
4633
+
4626
4634
def set_vocab (self ):
4627
4635
vocab_size = self .hparams ["vocab_size" ]
4628
4636
# Round vocab size to next multiple of 8
@@ -4697,6 +4705,100 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
4697
4705
return [(new_name , data_torch )]
4698
4706
4699
4707
4708
+ @ModelBase .register ("Mamba2ForCausalLM" )
4709
+ class Mamba2Model (TextModel ):
4710
+ model_arch = gguf .MODEL_ARCH .MAMBA2
4711
+
4712
+ def __init__ (self , dir_model : Path , * args , ** kwargs ):
4713
+ # Avoid using AutoConfig for hparams
4714
+ # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
4715
+ hparams = kwargs .pop ("hparams" , None )
4716
+ if hparams is None :
4717
+ with open (dir_model / "config.json" , "r" , encoding = "utf-8" ) as f :
4718
+ hparams = json .load (f )
4719
+ super ().__init__ (dir_model , * args , hparams = hparams , ** kwargs )
4720
+
4721
+ def set_vocab (self ):
4722
+ vocab_size = self .hparams ["vocab_size" ]
4723
+ # Round vocab size to next multiple of 16
4724
+ pad_vocab = self .hparams .get ("pad_vocab_size_multiple" , 16 )
4725
+ # pad using ceiling division
4726
+ # ref: https://stackoverflow.com/a/17511341/22827863
4727
+ vocab_size = - (vocab_size // - pad_vocab ) * pad_vocab
4728
+ self .hparams ["vocab_size" ] = vocab_size
4729
+
4730
+ if (self .dir_model / "tokenizer.model" ).is_file ():
4731
+ self ._set_vocab_sentencepiece ()
4732
+ elif (self .dir_model / "tokenizer.model.v3" ).is_file ():
4733
+ # mamba-codestral
4734
+ raise NotImplementedError (f"Please rename { self .dir_model / 'tokenizer.model.v3' } to { self .dir_model / 'tokenizer.model' } " )
4735
+ elif (self .dir_model / "tokenizer.json" ).is_file ():
4736
+ self ._set_vocab_gpt2 ()
4737
+ else :
4738
+ # Use the GPT-NeoX tokenizer when no tokenizer files are present
4739
+ self ._set_vocab_builtin ("gpt-neox" , vocab_size )
4740
+
4741
+ def set_gguf_parameters (self ):
4742
+ d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4743
+ d_conv = self .find_hparam (["conv_kernel" , "d_conv" ], optional = True ) or 4
4744
+ d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * d_model
4745
+ d_state = self .find_hparam (["state_size" , "d_state" ], optional = True ) or 128
4746
+ head_dim = self .find_hparam (["head_dim" ], optional = True ) or 64
4747
+ n_group = self .find_hparam (["n_groups" ], optional = True ) or 1
4748
+
4749
+ rms_norm_eps = self .find_hparam (["layer_norm_epsilon" , "rms_norm_eps" ], optional = True ) or 1e-5
4750
+
4751
+ # Fail early for models which don't have a block expansion factor of 2
4752
+ # TODO: does this really matter?
4753
+ assert d_inner == 2 * d_model
4754
+ assert d_inner % head_dim == 0
4755
+
4756
+ self .gguf_writer .add_context_length (2 ** 20 ) # arbitrary value; for those who use the default
4757
+ self .gguf_writer .add_embedding_length (d_model )
4758
+ self .gguf_writer .add_feed_forward_length (0 ) # unused, but seemingly required when loading
4759
+ self .gguf_writer .add_head_count (0 ) # unused, but seemingly required when loading
4760
+ self .gguf_writer .add_block_count (self .block_count )
4761
+ self .gguf_writer .add_ssm_conv_kernel (d_conv )
4762
+ self .gguf_writer .add_ssm_inner_size (d_inner )
4763
+ self .gguf_writer .add_ssm_state_size (d_state )
4764
+ self .gguf_writer .add_ssm_time_step_rank (d_inner // head_dim )
4765
+ self .gguf_writer .add_ssm_group_count (n_group )
4766
+ self .gguf_writer .add_layer_norm_rms_eps (rms_norm_eps )
4767
+ self .gguf_writer .add_file_type (self .ftype )
4768
+
4769
+ def modify_tensors (self , data_torch : Tensor , name : str , bid : int | None ) -> Iterable [tuple [str , Tensor ]]:
4770
+
4771
+ if name .startswith ("model.backbone" ) or name .startswith ("model.lm_head" ):
4772
+ # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
4773
+ name = name .removeprefix ("model." )
4774
+
4775
+ if name .endswith (".dt_bias" ):
4776
+ name = name .rpartition (".dt_bias" )[0 ] + ".dt_proj.bias"
4777
+
4778
+ new_name = self .map_tensor_name (name )
4779
+
4780
+ if self .match_model_tensor_name (new_name , gguf .MODEL_TENSOR .SSM_CONV1D , bid ):
4781
+ data_torch = data_torch .squeeze ()
4782
+ elif any (self .match_model_tensor_name (new_name , t , bid , suffix = "" ) for t in [
4783
+ gguf .MODEL_TENSOR .SSM_A ,
4784
+ gguf .MODEL_TENSOR .SSM_D ,
4785
+ ]):
4786
+ # unsqueeze A to use similar shape semantics as Mamba-1
4787
+ # (D is also unsqueezed, but for more straightforward broadcast internally)
4788
+ data_torch = data_torch .reshape ((* data_torch .shape , 1 ))
4789
+ elif self .match_model_tensor_name (new_name , gguf .MODEL_TENSOR .SSM_NORM , bid ):
4790
+ d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4791
+ d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * d_model
4792
+ n_group = self .hparams .get ("n_groups" , 1 )
4793
+ data_torch = data_torch .reshape ((n_group , d_inner // n_group ))
4794
+
4795
+ if name .endswith (".A_log" ):
4796
+ logger .debug ("A_log --> A ==> " + new_name )
4797
+ data_torch = - torch .exp (data_torch )
4798
+
4799
+ yield (new_name , data_torch )
4800
+
4801
+
4700
4802
@ModelBase .register ("CohereForCausalLM" )
4701
4803
class CommandR2Model (TextModel ):
4702
4804
model_arch = gguf .MODEL_ARCH .COMMAND_R
@@ -6457,12 +6559,20 @@ def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> st
6457
6559
# maybe we should fallback to text model's arch in that case, since not many models have both
6458
6560
text_config = hparams .get ("text_config" , {})
6459
6561
vision_config = hparams .get ("vision_config" , {})
6460
- arch = hparams ["architectures" ][0 ]
6562
+ arch = None
6563
+ if (arches := hparams .get ("architectures" )) is not None and len (arches ) > 0 :
6564
+ arch = arches [0 ]
6565
+ elif "ssm_cfg" in hparams :
6566
+ # For non-hf Mamba and Mamba2 models
6567
+ arch = hparams ["ssm_cfg" ].get ("layer" , "Mamba" ) + "ForCausalLM"
6568
+
6461
6569
# if "architectures" is found in the sub-config, use that instead
6462
6570
if model_type == ModelType .TEXT and text_config .get ("architectures" ) is not None :
6463
6571
arch = text_config ["architectures" ][0 ]
6464
6572
elif model_type == ModelType .MMPROJ and vision_config .get ("architectures" ) is not None :
6465
6573
arch = vision_config ["architectures" ][0 ]
6574
+ if arch is None :
6575
+ raise ValueError ("Failed to detect model architecture" )
6466
6576
return arch
6467
6577
6468
6578
0 commit comments