@@ -818,6 +818,21 @@ def get_vocab_base_pre(self, tokenizer) -> str:
818
818
if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664" :
819
819
# ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
820
820
res = "hunyuan"
821
+ if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf" :
822
+ # ref: https://huggingface.co/skt/A.X-4.0
823
+ res = "a.x-4.0"
824
+ if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6" :
825
+ # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
826
+ res = "falcon-h1"
827
+ if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86" :
828
+ # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
829
+ res = "falcon-h1"
830
+ if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896" :
831
+ # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
832
+ res = "falcon-h1"
833
+ if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b" :
834
+ # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
835
+ res = "falcon-h1"
821
836
822
837
if res is None :
823
838
logger .warning ("\n " )
@@ -4899,17 +4914,19 @@ def set_vocab(self):
4899
4914
def set_gguf_parameters (self ):
4900
4915
d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4901
4916
d_conv = self .find_hparam (["conv_kernel" , "d_conv" ], optional = True ) or 4
4902
- d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * d_model
4917
+ d_inner = self .find_hparam (["mamba_d_ssm" , " intermediate_size" , "d_inner" ], optional = True ) or 2 * d_model
4903
4918
d_state = self .find_hparam (["state_size" , "d_state" ], optional = True ) or 128
4904
- head_dim = self .find_hparam (["head_dim" ], optional = True ) or 64
4919
+ head_dim = self .find_hparam (["mamba_d_head" , " head_dim" ], optional = True ) or 64
4905
4920
n_group = self .find_hparam (["n_groups" ], optional = True ) or 1
4906
4921
4907
4922
rms_norm_eps = self .find_hparam (["layer_norm_epsilon" , "rms_norm_eps" ], optional = True ) or 1e-5
4908
4923
4909
4924
# Fail early for models which don't have a block expansion factor of 2
4910
4925
# TODO: does this really matter?
4911
- assert d_inner == 2 * d_model
4912
- assert d_inner % head_dim == 0
4926
+ # skip the assertion for FalconH1 Model
4927
+ if self .model_arch != gguf .MODEL_ARCH .FALCON_H1 :
4928
+ assert d_inner == 2 * d_model
4929
+ assert d_inner % head_dim == 0
4913
4930
4914
4931
self .gguf_writer .add_context_length (2 ** 20 ) # arbitrary value; for those who use the default
4915
4932
self .gguf_writer .add_embedding_length (d_model )
@@ -4946,7 +4963,7 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
4946
4963
data_torch = data_torch .reshape ((* data_torch .shape , 1 ))
4947
4964
elif self .match_model_tensor_name (new_name , gguf .MODEL_TENSOR .SSM_NORM , bid ):
4948
4965
d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4949
- d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * d_model
4966
+ d_inner = self .find_hparam (["mamba_d_ssm" , " intermediate_size" , "d_inner" ], optional = True ) or 2 * d_model
4950
4967
n_group = self .hparams .get ("n_groups" , 1 )
4951
4968
data_torch = data_torch .reshape ((n_group , d_inner // n_group ))
4952
4969
@@ -6656,6 +6673,113 @@ def set_gguf_parameters(self):
6656
6673
self .gguf_writer .add_audio_stack_factor (self .global_config ["stack_factor" ])
6657
6674
6658
6675
6676
+ @ModelBase .register ("FalconH1ForCausalLM" )
6677
+ class FalconH1Model (Mamba2Model ):
6678
+ model_arch = gguf .MODEL_ARCH .FALCON_H1
6679
+
6680
+ def __init__ (self , * args , ** kwargs ):
6681
+ # Set the hparam prefixes for Falcon Mamba2
6682
+ self .hparam_prefixes = ["mamba" ]
6683
+
6684
+ # Initialize the base Mamba2Model
6685
+ super ().__init__ (* args , ** kwargs )
6686
+
6687
+ # Use Llama conversion for attention
6688
+ self ._transformer_model_class = LlamaModel
6689
+
6690
+ # n_group and d_inner are used during reshape_tensors for mamaba2
6691
+ self .n_group = self .find_hparam (["n_groups" ])
6692
+ self .d_inner = self .find_hparam (["mamba_d_ssm" ])
6693
+ self .d_head = self .find_hparam (["d_head" ])
6694
+
6695
+ # Initialize any Falcon Mamba2 specific attributes
6696
+ self .has_attention = True # Falcon Mamba2 has attention components
6697
+
6698
+ # Load Falcon-H1 multipliers from hyperparameters
6699
+ self .attention_in_multiplier = self .find_hparam (["attention_in_multiplier" ], optional = True )
6700
+ self .attention_out_multiplier = self .find_hparam (["attention_out_multiplier" ], optional = True )
6701
+ self .ssm_in_multiplier = self .find_hparam (["ssm_in_multiplier" ], optional = True )
6702
+ self .ssm_out_multiplier = self .find_hparam (["ssm_out_multiplier" ], optional = True )
6703
+ self .mlp_multipliers = self .find_hparam (["mlp_multipliers" ], optional = True )
6704
+ self .ssm_multipliers = self .find_hparam (["ssm_multipliers" ], optional = True )
6705
+ self .intermediate_size = self .find_hparam (["intermediate_size" ])
6706
+ self .key_multiplier = self .find_hparam (["key_multiplier" ], optional = True )
6707
+
6708
+ def find_hparam (self , keys : Iterable [str ], * args , ** kwargs ) -> Any :
6709
+ prefixed = []
6710
+ for pfx in self .hparam_prefixes :
6711
+ prefixed .extend (
6712
+ "_" .join ([pfx , k ])
6713
+ for k in keys
6714
+ )
6715
+ keys = list (keys ) + prefixed
6716
+ return super ().find_hparam (keys , * args , ** kwargs )
6717
+
6718
+ def set_vocab (self ):
6719
+ self ._set_vocab_gpt2 ()
6720
+
6721
+ def modify_tensors (self , data_torch : Tensor , name : str , bid : int | None ) -> Iterable [tuple [str , Tensor ]]:
6722
+ tensors = list (super ().modify_tensors (data_torch , name , bid ))
6723
+ tensor = tensors [0 ][1 ]
6724
+
6725
+ if "down_proj" in name :
6726
+ tensor = tensor * self .mlp_multipliers [1 ]
6727
+ elif "gate_proj" in name :
6728
+ tensor = tensor * self .mlp_multipliers [0 ]
6729
+ elif "k_proj" in name :
6730
+ tensor = tensor * self .key_multiplier * self .attention_in_multiplier
6731
+ elif "q_proj" in name :
6732
+ tensor = tensor * self .attention_in_multiplier
6733
+ elif "v_proj" in name :
6734
+ tensor = tensor * self .attention_in_multiplier
6735
+ elif "o_proj" in name :
6736
+ tensor = tensor * self .attention_out_multiplier
6737
+ elif "out_proj" in name :
6738
+ tensor = tensor * self .ssm_out_multiplier
6739
+ elif "in_proj" in name :
6740
+ tensor = tensor * self .ssm_in_multiplier
6741
+ zxbcdt_multipliers = self .hparams ["ssm_multipliers" ]
6742
+ intermediate_size = self .hparams ["mamba_d_ssm" ]
6743
+ groups_time_state_size = self .hparams ["mamba_n_groups" ] * self .hparams ["mamba_d_state" ]
6744
+ tensor [:intermediate_size , :] *= zxbcdt_multipliers [0 ]
6745
+ tensor [intermediate_size :2 * intermediate_size , :] *= zxbcdt_multipliers [1 ]
6746
+ tensor [2 * intermediate_size :2 * intermediate_size + groups_time_state_size , :] *= zxbcdt_multipliers [2 ]
6747
+ tensor [2 * intermediate_size + groups_time_state_size :2 * intermediate_size + 2 * groups_time_state_size , :] *= zxbcdt_multipliers [3 ]
6748
+ tensor [2 * intermediate_size + 2 * groups_time_state_size :, :] *= zxbcdt_multipliers [4 ]
6749
+ elif "lm_head" in name :
6750
+ tensor = tensor * self .hparams ["lm_head_multiplier" ]
6751
+ elif "embed_tokens" in name :
6752
+ tensor = tensor * self .hparams ["embedding_multiplier" ]
6753
+ elif "mamba.norm" in name :
6754
+ tensor = tensor .reshape (self .n_group , self .d_inner // self .n_group )
6755
+
6756
+ tensors = [(tensors [0 ][0 ], tensor )]
6757
+ return tensors
6758
+
6759
+ def set_gguf_parameters (self ):
6760
+ super ().set_gguf_parameters ()
6761
+
6762
+ ## General Params ##
6763
+ self .gguf_writer .add_vocab_size (self .hparams ["vocab_size" ])
6764
+ # Override some Mamba2 defaults
6765
+ self .gguf_writer .add_block_count (self .block_count )
6766
+ self .gguf_writer .add_context_length (self .hparams .get ("max_position_embeddings" , 0 ))
6767
+ self .gguf_writer .add_feed_forward_length (self .hparams ["intermediate_size" ])
6768
+
6769
+ ## Attention params ##
6770
+ self .gguf_writer .add_head_count (self .hparams ["num_attention_heads" ]) # Override value 0 from Mamba2
6771
+ self .gguf_writer .add_head_count_kv (self .hparams ["num_key_value_heads" ])
6772
+ self .gguf_writer .add_key_length (self .hparams ["head_dim" ])
6773
+ self .gguf_writer .add_value_length (self .hparams ["head_dim" ])
6774
+
6775
+ ## Validation ##
6776
+ assert self .hparams .get ("hidden_act" ) in [None , "silu" ], "Only SILU activation supported"
6777
+ assert self .d_inner % self .d_head == 0 , f"SSM inner size { self .d_inner } not a multiple of head dim { self .d_head } "
6778
+
6779
+ # Add any other Falcon Mamba2 specific configuration
6780
+ self .gguf_writer .add_rope_freq_base (self .find_hparam (["rope_theta" ]))
6781
+
6782
+
6659
6783
@ModelBase .register ("HunYuanMoEV1ForCausalLM" )
6660
6784
class HunYuanMoEModel (TextModel ):
6661
6785
model_arch = gguf .MODEL_ARCH .HUNYUAN_MOE
@@ -6809,6 +6933,16 @@ def prepare_tensors(self):
6809
6933
class SmolLM3Model (LlamaModel ):
6810
6934
model_arch = gguf .MODEL_ARCH .SMOLLM3
6811
6935
6936
+ def set_vocab (self ):
6937
+ super ().set_vocab ()
6938
+ # remove unsupported array slicing in chat template
6939
+ # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
6940
+ from transformers import AutoTokenizer
6941
+ tokenizer = AutoTokenizer .from_pretrained (self .dir_model )
6942
+ if tokenizer .chat_template is not None :
6943
+ chat_template = tokenizer .chat_template .replace ("[:]" , "" )
6944
+ self .gguf_writer .add_chat_template (chat_template )
6945
+
6812
6946
###### CONVERSION LOGIC ######
6813
6947
6814
6948
0 commit comments